
Best
Avai~lable

copy

2300 CHESTNUT STREET. SUITE 2",t • PHILADELPHIA.PA 19IC3
C2 X Z,2-4l64-OS55 FAX: 215-SU-0665

Software Tools for Formal Specification and
Verification of Distributed Real-Time Systems:

A Final Report AD-A283 477

Submitted Under
Contract Number N00014-94-C-.001

Line Item Number 0001AB

July 29,,199 DTIC
ELECTE

Ssmlteto: AUG 17 M
Atin: Gary M. Koob

Oe of Naval Resear-
hsand" Tower One
o Nor* Quincy Street

Arlington VA 22217-660

PrepsRd by:
j. Kim (inipal -i--"tor), J. Chol and 1. Lee

Computer Command and Control Company
2300 Chestut Stree Ste 230

Philadelphi PA 19103

94-243o2 94 8 01 041
!!lllllc qu.,, ms,,il

1333133g Iu

Summary

The goals of Phase I of SBIR Contract N00014-94-C-0081 are to design in detail a toolkit

environment based on formal methods for the specification and verification of distributed

real-time systems and to evaluate the design. The evaluation of the design includes inves-

tigation of both the capability and potential usefulness of the toolkit environment and the

feasibility of its implementation. To meet these goals, we have

1. Designed a graphical specification language based on ACSR (Algebra of Communicat-

ing Shared Resources) and develop a graph attribute grammar of the language.

2. Designed the overall implementation structure of the toolkit environment including a

menu-driven graphical user interface, a graphical composition tool for specifications.

analysis tools and the interface between the components.

3. Evaluated the implementations of existing graphical specification systems to see whether

they can be used without major changes in implementing our graphical specification

language.

4. Identified state minimization algorithms, analysis techniques (e.g., simulation), and

verification techniques (e.g., equivalence test, state exploration, and model checking)

that we plan to implement.

5. Identified a real-time logic and a model checking method as well as a proof system for

our graphical specification language.

The two salient aspects of our graphical specification language are:

1. Its semantics is precisely the same as that of ACSR.

2. It includes features specially useful for scalability.

Since ACSR has a well-defined formal semantics. there is no semantics ambiguity in our

graphical specification language.

i

Contents

1 Introduction 4

2 Background 9

2.1 ACSR& Algebra of Communicating Shared Resources 9

2.2 M odechart 14

2.3 Semantic Difference and Translation 17

3 GCSR: Graphical CSR 26

3.1 GCSR Syntax 26

3.2 Valid GCSR Specification 30

3.3 Informal GCSR Semantics 32

3.4 Formal GCSR Semantics 35

4 Examples 41

& Automatic Analysis Techniques 53

5.1 State Minimization Algorithms. 53

5.2 Additional Equivalence Relations for ACSR 55

5.2.1 LTS Baed Equivalences 55

5.2.2 Trace Based Equivalences 62

5.3 Logic for Communicating Shared Resources 64

6 Phse II Implementation Plan 67

6.1 The Overall Structure of the Toolkit Environment 67

6.2 Im plementation 69
Accesin For
NTIS CRAMJ
OTIC TAB
Unannounced 0
Justification

Statement A per telecon Gary Koob BY
Office of the Chief of Naval Research Dtritionl
800 north Quincy Street Code 1133
Arlington, VA 22217-5000 Availability Codes
Ni 8/17/% 2 Avail ardlor

D ist S;ecia

• ~2,

List of Figures

I Syntax of ACSR Process Expressions 10
2 An example of modechart 15
3 An example of translation of ACSR to Modechart 21

4 Modechart specification of the HARM Missile example 23

5 GCSR types of nodes (top) and edges (bottom) 27

6 Extended BNF for GCSR 29

7 Extended BNF for GCSR (continued) 30

8 ACSR to GCSR translation 36
9 ACSR to GCSR translation 37

10 GCSR simple graphical reductions and short hand notations 38
11 GCSR simple graphical reductions and short hand notations (continued). . 39
12 GCSR complex graphical reduction 40

13 Telephone Example 42

14 Mouse Example 44

15 Rail Road Crossing Example ACSR Specification 45
16 Railroad Crossing Example: GCSR Specification for ACSR terms in Figure 15 46

17 Example of graphical reductions applied to the example of Figure 16 47

18 Further unfolding applied on Train, Gate of the example of Figure 17 48

19 Further unfolding applied on Train, Gate and Control of the example of Figure

18 . 49

20 Railroad Crossing Example: All reference nodes have been replaced50
21 Sensor Example. Reference nodes have been replaced 51

22 Router Example 52

23 The Coarsest Partition 54

24 GCSR Toolkit Environment 68
25 Work Window: the HARM missile example 70

3

1 Introduction

This document is the final report for Phase I of SBIR Contract N00014-94-C-0081. It includes

the results of Phase I as well as a brief plan for Phase 11.

The result reported here represents an important development for implementing a graph-
ical toolkit environment based on a formal method for the specification and verification of

distributed real-time systems. Formal methods treat system components as mathematical

objects and provide mathematical models to describe and predict the observable properties

and behaviors of these objects. There are several advantages to using formal methods for

the specification and analysis of real-time systems. They include (1) the early discovery of

ambiguities, inconsistencies and incompleteness in informal requirements; (2) the automatic
or machino-assisted analysis of the correctness of specifications with respect to requirements;

and (3) the evaluation of design alternatives without expensive prototyping.

As computers become ubiquitous, they are increasingly used in mission critical environ-
menu. In particular, Navy systems rely increasingly on real-time software to accomplish

their intended goals. Typical mission critical applications are control systems, monitoring

systems and communication systems. Any failure of such computer systems may cause a
great financial loss, environmental disater or even the loss of lives. Potential high cost
associated with an incorrect operation of these systems has created a demand for a rigor-
ous framework in which various design alternatives can be formally specified and rigorously

analysed and tested before implementation.

It is commonly believed that future critical systems will be more complex due to increased

demands on their functionalitie as well as the size of the problem domain. Thus, it will

be difficult to analyse and test correctness without computer-aided tools. In addition, these
systems are costly to prototype. requiring careful prediction of timing properties before

implementation and evaluation of dei alternatives. Thus, it is important to develop a

formal framework that supports automatic and computer-aided analysis as well as scalable
sqpeiflctioms to effectively cope with increased complexity.

There has been significant progress in the development of real-time formal methods

[36. 16, 32. 27. 26. 3, 9, 39, 2. 21. 10. 14. 12. 29, 28. 37, 221. Much of this work falls
into the traditional categories of untimed systems such as temporal logics, assertional meth-
ods, met-based models, automata theory and process algebras. While most formal models for
real-time systems capture delays due to process synchronization. they abstract out resource-

sped& details by assuming idealistic operating environments. On the other hand. scheduling

4

algorithms and analyzers [25, 43, 34, 40, 41, 4, 38, 13, 42, 12, 35] developed for real-time sys-

tems capture contention on shared resources. In these approaches. however, the underlying

computation model is generally limited to simple precedence relations between processes.

Since complex interactions between processes are not captured, these approaches cannot be

used to prove properties other than schedulability.

To bridge the gap between these two disciplines, we have developed a formal framework,

called ACSR (Algebra of Communicating Shared Resources) [11, 23]. ACSR is based on a

computation model that supports the notions of resources and priorities. These notions are

necemary since the timed behavior of the system is affected not only by the time that actions

take to execute but by delays introduced due to the scheduling of actions that compete to

use the same resource. ACSR allows the specification of resource requirements and the

verification of timing properties to take the availability and scheduling of resources.

One goal of this project was to develop a scalable graphical formalism that can be used

to specify large real-time systems. For this, we developed an graphical formal specification

language for real-time systems, called GCSR (Graphical Communicating Shared Resources).

GCSR is a formalism developed by combining two real-time methods, Modechart and ACSIL

GCSR is based on ACSR; that is, there is a well-defined mapping between GCSR and ACSR.

This correspondence is very important since this implies that the semantics of GCSR is well-

defined because the theory of ACSR has been completely worked out.

GCSR is simila to Modechart in a sense that it is a graphical specification language and

it adopts basic graphical ideas such as node, directed edge and time of Modechart. GCSR.

howe, is different from Modechart becaue GCSR supports the notions of resource and

priority. In addition, GCSR is action based and has constructs to build the modular and

hierawchical specification of a real-time system. Because of the resource-based characteristics

of ACSIL GCSR aWm supports the integrated specification of functional as well as resource

aspects of a real-time system. In addition to modularity, this integrated specification capa-

bility also distinguish GCSR from Modechart.

Then are several advantages to our formal method GCSR:

• Scalability: For formal specifications to be practically useful. specifications must be

scalable. GCSR is designed to support scalable specification; in particular, GCSR sup-

ports hierarchical structures through noting, top-down and bottom-up development

of specifications through naming and refinement. and modularity through limiting vis-

ibility of events.

S~5

* Graphical and Textual Specification Languages: It is easy to present and understand

large scale systems at high-level using a graphical form. However, it sometimes is

natural and faster to specify the details of a large system textually. In our toolkit
environment, a real-time system can be specified through the mixed use of GCSR and

ACSR, depending on whichever medium is more convenient.. Since there is a natural

mapping between GCSR and ACSR (and vice versa), the mixed form of specifications

does not result any ambiguity.

" Equivalence: The equivalence relation of ACSR indicates when two systems behave the

same. Furthermore, equivalent processes can be substituted one another inside other

process. This makes it possible for modular specification and analysis of large systems.

In addition, process may be minimized with respect to the equivalence relation before

analyzed, which often times simplifies verification. These techniques are obviously

applicable to GCSR since there is a natural mapping between GCSR and ACSR. For
example, one can check whether or not two GCSR specifications ae bisimular. This

is remarkable since other graphical specification languages usually do support such an
equivalence relation. When two specificatioes are equivalent, one specification inside a

aI•ge system specification can be substituted by the other one. We note that we have

identified many useful equivalence relations as part of the project (see Section 5.2).

" Resources: Since real-time systems consist of several shared resources such as cpu.
memory and seasor, it is natural to model these resources in terms of the primitive

notion of resource in GCSR. Furthermoe, GCSR can be used to consider resource-

induced constraints during the design stage of the development cycle and to eliminate

unimplementable design alternatives without expensive prototyping.

"* Priority: The notion of priorities is always present in real-time systems to arbitrate re-

scu coatention. Hence, every formal method developed for real-time systems should

support the notion o(priority; otherwise. it may not possible model system's behav-

ion correctly. It sometimes is possible to encode the notion of priority using boolean

formulas This. however. can result in a specification which is difficult to understand

dne to eqxosion on the number of Book-an condtions. For instance. Modechart model
of tO HARM missile system is quite compicate due to priority encoding [81. whereas
the GCSR model of the same missile system is simple and clear. These examples are

preseted in later sections.

6

"* Formal Semantics: As stated earlier, the semantics of GCSR is defined using ACSR. a

real-time process algebra. The formal semantics determines the behaviors of a GCSR

specification precisely and unambiguously. This in turn makes it possible to prove the

properties of a GCSR specification rigorously and mathematically.

"* Executable: Since ACSR has well-defined operational semantics. a GCSR specification

is executable. There are a few advantages for executable specification. One is that

it can be used as a fast prototype. Another is that may help to detect unintended

behaviors of the specification. before attempting to Prove its correctness.

"* Synchronous and Asynchronous Communication: GCSR support both synchronous

and asynchronous communications. Asynchronous broadcasting events are essential to

describe events from the environment. Furthermore, we have experienced in many oc-

csosthe needs for broadcasting events during the specification of real-time systems.

"* Deane and Discrete Time: Although GCSR is based on discrete time, it can easily be

extended to dense time GCSR since we have already completed the development of

dense time ACSR 161.

The tooflkt environment we designed coosists of a menui-driven graphical user interface.

a raplucs editor, analysis tools and the interfaces between the components.

The graphical user interface provides a set of commands for managing specifications.

activating the graphics editor. performing formal analysis of a specification and terminating

the environment.

A seicainis repreente in terms of graphs ino the environment. A use creates.

viws and modifies a specification using the graphics editor which 'is based on icons and

momw The editor promides the following operations on graphical objects: copy. delete.

paste, align. enlarge. shrink. etc. A large-scale system 'is represented by a set of graphs and

their hierarchy. The editor provides tools of scrolling the graph window and navigating toe

hkeracby G(the graphs.

A sp mcification can be converted automati~cally to a state machine for analsis. Once a

spc~atiou has been converte to a state machine. the analyst may execute the specifica.

tie. sad tout it to determine its. rewaanableoess. The anal? st mkv then apply optional state

miai~tionalgorithms to the specification. Tbough the effectivenms of state minimiza&

tie, wil vary. uuccmfial application of this proces can significantly reduce the computing
loom Ireq aiid! by later Analysis phases

The analysis of the state machine will be carried out using the following analysis tools:

The first analysis tool is a simulation tool that demonstrates operational behaviors of a

specification by executing the state machine. The second analysis tool is a model checking

tool that will allow the specification to be tested against real-time logic propositions. The

third analysis tool is a state exploration tool that can be used to generate valid traces of

actions for the specification being analyzed. The fourth analysis tool will test for equivalence

between two or more alternative specifications.

The rest of this report is organized as follows: In Section 2, we describe briefly ACSR
and Modechart. The description of ACSR includes a set of extensions that we made to

ACSR for this project. We also compare their semantics and motivate why we developed
a new graphical language GCSR instead of using Modechart. Section 2.3 contrasts their

expressiveness using the HARM missile system example. Section 3 details the syntax and

semantics of GCSR. We explain how to trantlate from ACSR to GCSR and vice versa. In ad-
ditioa, we decribe a set of graph reductions that ame developed to enhance the readability of
GCSR specifications. Section 4provides example GCSR specifications for telephone system.

mouse system, railroad crowing, en-sor system. and routew systems. Section 5 summarize

owr investigation on automatic "nalyVIS techniques. Section 51 briefly explains the state

minindsalice algorithm we plan to impkmeat. Section 3.2 identifies a set of equivalence

relatioks that ae weaker than the ones we currently have Section 5 3 describes logic that

we have designed to facilitate the partial specification (i.e.. requirement specificaton) and

model checking of GCSR. Section 6 deacnbes the oveall structure of the toolkit environ.

mept that we proposed to implemtnt dun4g Phase II of this project and identifies existing
software compoceats that can be rused/adapted for the nmpvienmtation

2 Background

The proposed tools are based on our real-time algebra called ACSR (Algebra of Commu-

nicating Shared Resources). Section 2.1 briefly overviews ACSR. During Phase 1. we have
investigated a possibility of using Modechart as a graphical laMguage for ACSR. In Section

2.2, we briefly explain Modechart. Section 2.3 contrauts the semantic differences between
ACSR and Modechart. As shown in 2.3, it is posible to translate Modechart to ACSR.
However, because ACSR has more features, It is not posible to capture all aspects of ACSR
without extending Modechart. Our attempt to extend Modechart ha resulted in a new
graphical language, which is described in Section 3. As an illustration of the expressive-
m. of ACSR, we specify the HARM Misie example in ACSR and compare it with the

Modchart specificataon 2.3.

2.1 ACSR: Algebra of Communicating Shared Resources

This sectio describes the syntax and operational o•mntics of ACSR (the Algebra of Com-
musicatlnS Shared Resources), a real-time proce, algebra that incorporates the notions
of cowmunaation, concurrency, resources, and proriotns into a lingle formalism. ACSR is
competely described ta (231

ACtIOn. When modlig a process with aglebtaic exprremons, the progres of the pro-
cos throog its intewactwo with external agents is modeled by the execution of disc~rte
"actio.." ACSR mses two distinct actco type* to model conputattzo: time and resourc*

co€nesiag actio0, And tanta,•ot u evet.
Ta#d A4cto -We comnsder a system to be cOmposed of a finite tet of s-rially reusable

i ctes., dvented by X. An action that coosumre one 'ck' of time to drawn from the
domaing I x N) (the power wt of R v N), with the mtnctwo that each resource be
Itspn M-- at most once. As an example, the ang•io action. ({r-.pi). denotes the toe of
sm re•urce r f R tuinning at piwity leve p Prorty valise range o•vr N. with 0 being
tbh lowest (Iwt pressing) prinoty. and piowity incra $ng with incmasing p The action I
rep fNots iRn 6N out time UMt. momale aI resources are inactIve

We un Va to denote the domaun of timed actIons. and wr let A. B. C range over lp

We defve p(A) to tTe hwt of resours usedbyrsheaction A. P&* gi p i (1 . (r2. P02 I=
(Fl. r4j. We also us -r. .4) to denote the piorty k€le of the action A ir the. reso'i r. e.Pg

,- P By couontv m. -f'- as noIn iA . then r.•4) -- O

9

2ustantaneouts Events-We call instantaneous actions events, which provide the basic

synchronization in our process algebra. An event is denoted by a pair (a. p), where a is the

4abel of the event, and p is its priority. Again, priority values range over N with 0 being

the least pressing priority. Labels are drawn from the set L UI] U {r}. where if a is a given

label, we say that d is its inverse label, i.e. a = a. A label and its inverse can be thought

of as naming complementary ends of a communication channel. As in CCS[31], the special
identity label, r, arises when two events with inverse labels are executed in parallel.

We use DP to denote the domain of events, and let e, f and 9 range over DE. We use

I(e) and ir(e) to represent the label and priority, respectively, of the event e.

Finally, the entire domain of actions is V = Dn U DE, and we let a and 3 range over D.

ACSR Syntax and Semantics. Let P, P1, P2 , and P3 range over the domain of terms,

and let X range over the domain of term variables. Additionally. we assume an infinite set
of free term variables, FV ACSR's syntax is given by the grammar of Figure 1.

P :: N N IA:.:PIe.P P,+Pi IP,{IP2 .I
PAS PI,P1, P3)I [PJ1 I P\F I rec X.P IX

Figure 1: Syntax of ACSR Process Expressions

NIL is a proces that executes no action (i.e.. it is initially deadlocked). There are two

prefix operators, corresponding to the two types of actions. The first. .4 : P. executes a

tisced. resoce-consuming action .4, consumes one time unit. and proceeds to the process

P. The second prefix operator, e. P, executes the instantaneous event r. and proceeds to P.

The Choice operator P, + P, represents nondeterminism - either of the processes may be

chosen to xecute, subject to the evwt offerings and resource limitations of the environment.

The operator PilPl is the concurrent execution of P, and P2.
The Scope construct P S6 P, Pt. P3) binds the proces3 P by a temporal scope(241. and

incorporates both the feature, of timeotts and interrupts. We call t the time bound, where

(E #* U f}I (i.e.. is either a noa~oegative integer or infinity). P executes for a maximum

of I time units. The scope may be exited in a number of ways. First. if P successfully

terminate within time (by executing an event labeled with a. then control proceeds to the

'*ucc.e.baadklet" P, (here. a maty be any labe other than r). Second. if P fails to terminate

within time 1. then control proceed to the "timeout exceptaon-handler- P- Lastly. at any

10

time while P is executing it may be interrupted by P3's execution of a timed action or

instantaneous event, and the scope is then departed.

The Close operator, [PI', produces a process P that monopolizes the resources in I C
X. The Restriction operator, P\F, limits the behavior of P: events with labels in F are

permitted to execute only if they synchronize and become the internal event r. The process

rec X.P denotes standard recursion, allowing the specification of infinite behaviors. The

term X, without a "rec" binding, is a free variable that belongs to the infinite set FV.

The semantics of ACSR is defined in two steps [231: unprioritized semantics that provides

all behaviors ignoring priority information and then prioritized semantics that eliminates un-

prioritized behaviors through priority arbitration. Here, we only describe the unprioritized

semantics of ACSR by developing the unconstrained transition system. A transition is de-

noted as P -*--- P', for P and P' processes and a an action. Within "--+" no priority

arbitration is made between actions.

The two rules for the prefix operators are axioms, i.e. they have premises of true. There

is one rule for time-consuming actions, and one for events.

ActT A:P 7P Actl C.P--*P

For example, the process {(r 1 ,pI), (r2,p2)1 : P simultaneously uses resources r1 and r 2 for

one time unit, and then proceeds to P. Alternatively, the process (a, p).P executes the event

"(a,p)," and proceeds to P.

The rules for Choice are identical for both timed actions and instantaneous events (and

hence we use "a" as the label).

ChoiceL 2 PChoiceR

P + Q .. pp+Q .oc Q,

As an example, (a,7).P + {(r 1,3),(r 2 .7)} : Q may choose between executing the event

(a. 7) or the time-consuming action {(ra, 3), (r2, 7)}. The former behavior is deduced from

rule Actl. while the latter is deduced from ActT.

The Parallel operator provides the basic constructor for concurrency and communication.

The first rule, ParT, is for two time-consuming transitions.

ParT P±..,Q _41 2 Q, (p(A.)fnp(A 2)=O)PIIQ .RuA2 P'IIQ'

Note that timed transitions are truly synchronous, in that the resulting process advances
only if both of the constituents take a step. Thus. care must be taken to insure that every

ii

step of a timed computation offers one or more timed alternatives, lest the lack of a timed

step should "stop the clock." The condition p(A 1) n p(A 2) = 0 mandates that each resource

is truly sequential, and that only one process may use a given resource during any time step.

The next three laws ae for event transitions. As opposed to timed actions, events may
occur asynchronously (as in CCS and related interleaving models).

ParIL P P ParIR Q Q,

]ParCom '-I Q q

PIIQ "•" PIIQ'

The first two rules show that events may be arbitrarily interleaved. The last rule is for two
synchronizing processes, i.e. P executes an event with the label a. while Q executes an event

with the inverse label a. Note that when two events synchronize. their resulting priority is

the sum of their constituent priorities.

The Scope operator possesses a total of five transition rules describing the various be-
haviors induced by a temporal scope. The first two rules show that as long as t > 0 and P

does not execute an event labeled with 6, the executions of P continue.

ScopeCT p p(t > 0)P d, PQ.,s) - P (Q _ R, S)

p _.L. p,
SOO p P (i(C) bt > O)S~oe• pdl (.a. s) "-.P'Sf -,(.n)

The ScopeE (for "end") shows that P can depart the temporal scope by executing an event

labeled with 5. Upon exit, the label b is converted to the identity label r; however, the same

priority is retained.

P (6."~)ScopeE (F > 0)

The next rule. ScopeT (for "timeout"). is applied whenever the scope times out. i.e. when
t 0. At this point, control proceeds to the exception handler R.

ScopeT R J? (f=0)
P St (Q. R.s • Y R'

12

Finally, Scopel shows that the process S may interrupt (and kill) P while the scope is still
active. Note that the interrupt step may be one of several options offered simultaneously.

Also note that scopes may be nested arbitrarily deeply. When nested scopes use the same
action to trigger an interrupt, the interrupting action will propagate upward after each

interruption. This follows from rule Scopel, which specifies that the interrupting action is

preserved.

Sco ~Pe pStA (Q, R, S5) - S' t>0

The Restriction operator defines a subset of instantaneous events that are excluded from
the behavior of the system. This is done by establishing a set of labels, F (r V F), and
deriving only those behaviors that do not involve events with those labels. Note that while

P\F restricts P from communicating with other processes using labels in F. concurrent sub-
processes within P are free to interact with one another using these labels. Thus, restriction
can be viewed as the assignment of dedicated channels for communication within a process.

Note also that time-consuming actions are unaffected by restriction.

ResT p p Rea P P (a,p , F)
P\F -, P\F 1 P\F

While Restriction assigns dedicated channels to processes, the Close operator assigns
dedicated resources. When a process P is embedded in a closed context such as [P]J, we

ensure that there is no further sharing of the resources in I. Assume that P executes a time-

consuming action A. If A utilizes less than the full resource set 1. the action is augmented
with (r.0) pairs for each unused resource r E I - p(A). The way to interpret Close is as
follows. A process may idle in one of two ways: it may either release its resources during
the idle time (represented by 1), or it may hold them. Close ensures that the resources are

held. (Instantaneous events are not affected.)

CloeeT p P (A2 = {(r.O) I r E l - p(AI)})

CloOMI [P L [P,'.,

The operator rec X.P denotes guarded recursion. allowing the specification of infinite

behaviors. lR t, P c .rP a , P

rec X.P ' P'

13

P[r, X..P/xI is the standard notation for substitution of rec X.P for each free occurrence of

X in P. By guarded recursion, we mean that all occurrences of X in rec X.P are preceded

by some action a. For example, tee X.(A : X) is guarded, while rec X.(X + A : X) is not.

As an example, consider rec X.(A : X), which executes the resource-consuming action
A'A" forever. By ActT, A : (tec X.(A: X)) -- ,rec X.(A : X), so by Rec, rec X.(A :

X) r-- tee X.(A: X).

Extensions to ACSR. To make ACSR practical, we made two extensions. One extension

is to include the notion of broadcasting. In ACSR, we introduce two symbols, ?? and !! for

broadcasting: a?? denotes receiving an event through the broadcasting channel a, and a!!

sending an event. The operational semantics for a?? and a!! are as follows:

P."p Q• IýL P __# Q -il Q

PI -- P'IIQ PUlQ --l PiIQ'

a??.~~ P T_??. Q ,, p a?? q p,

The above operational semantics are basic concepts of broadcasting communication which

are based on the following two facts:

"* Receiver waits indefinitely until sender sends a message.

"* Sender proceeds to next precess immediately after sending a message without checking

the existence of receivers.

In order to model broadcasting communication using ACSR. a!! should not be restricted.

but a?? must be always restricted.

Another extension is to augment ACSR with operations that allow the use of ACSR as

a more practical specification language. These operations include: a process name bind-

ing operation (P = Q), generalized parallel and choice operations, indexed processes (P[1]

for i from I to n), event ((p,e[ui)) and resource ({(p,r[iJ)}) specifications. The detailed

specification of these additions can be found in [7].

2.2 Modechart

Modechart is a graphical specification language developed to provide a compact and struc-

tured way to represent real-time systems. Modechart is a variant of the Statechart language.

14

The motivation of Modechart is given as follows [151: (1) Statechart is too liberal in per-

mitting the forms of predicates to appear in the conditions for enabling state transitions.

As a result, it is difficult to prevent anomalies in defining a semantics for Statechart. (2)

Statechart does not provide an adequate treatment of stringent timing constraints.

MO

MI Transition Condition M2

Action A

Action A: description of A

Figure 2: An example of modechart

We briefly review the notions of mode, transition and action in Modechart.

Mode. Modes partition the state space of a system. They can be viewed as the specification

of control information that impose structure on the operation of a system.

Modes can be nested within a mode. Nested modes are related either serially or in

parallel.
Senia modes-Serial modes specify a sequential relationship between modes. The system

operates in at most one serial mode at a time.

Parallel modes-Parallel modes define a parallel relationship between modes. The system

operates in all of the parallel modes simultaneously. There are following restrictions on

parallel modes.

* A transition between parallel modes is not allowed.

e A transition out of one mode requires exit out of all other modes that are parallel to
it.

Well-formed modes-In order to prevent ambiguous modechart specifications, the notion

of well-formedness and the UDIM (Unambiguous Designation of Initial Modes) condition are

developed. The semantics of modechart is only valid among modecharts of which modes are

well-formed and satisfy the UDIM condition. Without the UDIM -dition, a well-formed

mode can still be ambiguous if initial modes are unspecified.

15

fransition Transition between two modes represents a change in the control flow of the
system. A transition is an instantaneous event which takes zero time unit. Each transition
is ausociated with a condition. The condition for a transition is of the form

cI V c2 V -.. V c,

where each ci is either a triggering condition or a lower and upper time boui. striction on

when the transition may be taken.

Triggering condition- Triggering condition ci is of the form

p, A"'..A"'..p,

where the pi's specify a condition in terms of the occurrence of an event or the truth values

of certain predicates. Each pi is in one of the following three forms:

1. S (or ,) is true at time t if the the state variable S is true (or false) at time t.0

2. {MI, M2 ,.. ., M,,} is true at time t if the system is in at least one of the specified

modes at a finite interval up to time t.2

3. E is the occurrence of an event E at the t3 where E can be an

o external event, e.g., fAE,

o event denoting start of an action, e.q. T A,

* event denoting completion of an action, e.g., I A,

* event setting a state variable to true, e.g., (S T).

• event setting a state variable to false, e.g., (S := F),

* event denoting entry into mode, e.g., (Ml := T), or

* event denoting exit from mode, e.g., (Ml F).

Lower/Upper Bound Condition-A condition ci denoting a lower/upper bound restriction
is of the form (r, d), where r is a non-negative integer denoting a delay and d is a positive
integer or oc denoting a deadline.

There are three special forms of lower/upper bound condition: alarm r = (r, r), delay r -
(r, oo), and deadline d (0. d).

'In RTL. S(9.1) (or .9t.i))s true.
212 RTL. for Some M,, M,(t.t) is true.
*In RTL, G(E, i) = I is true.

16

Actions. The basic difference between actions and mode transitions is that actions take
nonzero time, whereas mode transitions take zero time. In Modechart, each action in a
system must be associated with a mode. Furthermore, at most one action may be associated
with a mode. Thus, if two or more actions need to be performed when a system is in a

certain mode, then the designer should creat a child mode for each action.

When a system designer wishes to specify that an action has to be performed when an
event occurs, the action has to be specified in the destination mode of the transition. This is

justified since a transition is instantaneous in Modechart, the action will be performed upon

entering the destination mode.

The value of a state variable is changed explicitly after completing the execution of an

action which takes non-zero units of time to perform. Therefore, the value of a state variable
is changed at the end of action execution.

2.3 Semantic Difference and Translation

In this section, we identify semantic differences between ACSR and Modechart.

* Non.delayed event as. delayed event-In Modechart, control can stay inside a mode

waiting for the triggering condition to be true. That is, suppose we have a serial mode

such that M -.-! N. The ent-ring time of control into the mode M may differ from

that into the mode N. On the other hand, in ACSR, process cannot wait for event.

unless waiting possibility is explicitly specified. For instance, suppose Q is an ACSR

process such that Q t a.P. Whenever Q is executed at time t, the event a must occur

at time t, and the resulting process P is at the same time t. The delayed event in

Modechart can be emulated by Q V a.P + O: Q.

" Event expression-In ACSR, events can not be composed using V or A, that is. events
are atomic. Modechart can have an event expression as a triggering condition of a
transition.

"* Resource-ACSR has the notion of resources. The use of resources by a process requires

the passage of time. The most natural Modechart notion to ACSR resource is the

notion of action which is defined inside a mode. Note that MCTool does not support

actions.

"* Priority-The choice operator in ACSR is based on priority: a higher priority pro-

cess is chosen. When priority comparison is not possible, the choice is done non-

17

deterministically. On the other hand, Modechart does not support the notion of pri-

ority. When several transitions are possible, one is chosen nondeterministically.

"* Broadcasting vs. synchronization-The communication mechanism of ACSR is syn-

chronous communication, whereas that of Modechart is broadcasting. The followings

are basic concepts of broadcasting communication.

- Receiver process (a??.P) waits until a sender sends a message.

- Sender process (a!!.Q) proceeds to the next precess immediately after sending a

message without checking the existence of receivers. The same message is deliv-

ered to all waiting processes.

These communication behaviors can be emulated by ACSR as follows:

- a??.P by recX.(a?.P + 0 : X)

- a!!.Q by recX.(a!.X + Q)

"* Mode variable and value test- Whenever control enters and exits a mode M, Mod-

echart automatically generate events, -> M and M->, respectively. Also, there is

a condition for each mode M such that M == true or M == false depending on

whether control is in the mode M at the current time and is not in M, respectively. A

mode variable is encoded using ACSR as follows: Suppose M is a mode.

M 'IMF

MF '.- falseM!.MF + enterM?.MT +0: MF

MT '4 true..M!.MT + exi.M?.MF +0: MT

M signals false.M! to whichever process needs it until M is entered. After M is

entered, it signals true.-M until it is exited.

"* State variable-Similar to mode variables, Modechart also supports state variables. For

instance, action (Set Var := F) and boolean condition (Var == true). The behavior
of a state variable can be encoded as follows: We assume that the initial value of the

variable Var is false.

Var 'd VarF

VarF 1 falseVar!.VarF + setYarT?.VarT +0: VarF

VarT 'd trueVar!.VarT + set.VarF?.VarF + 0: VarT

18

9 Timeout-ACSR has a powerful timeout which is whenever timeout occurs the timeout

process must be executed. A similar notion of timeout in Modechart is alarm t. which is

[t, t). However there are two differences. 1) A mode can have several alarm transitions.
For instance, a mode can have two transitions where for each triggering condition is

alarm 5 and alarm 6, respectively. 2) A mode may have two transitions: one with

alarm 5 and another with a condition c. Here, if the condition c is true at time 5,
either transition can be executed nondeterministically.

Translation from Modechart to ACSR. It seems that the subset of Modechart which
is supported by MCTool can be translated easily into ACSR. Such a subset of MCTool has

the semantics of ACSR, hence, no ambiguity is possible. In this case, a real-time system can

be specified using MCTool and the correctness of the system can be verified using ACSR

based analysis tools.

There is one major problem with this approach because ACSR is based on synchronous

communication, whereas Modechart is based on broadcasting. There are two ways to han-
dle broadcasting mechanism: one way is to extend ACSR so that the new ACSR includes

broadcasting events, and the other way is to emulate broadcasting mechanism using ACSR

synchronous communication as seen in the previous section.
We now describe how a subset of Modechart may be translated into ACSRL We assume

that the modechatu used here are well-formed.

I. Mode names: we define ACSR variables associated with the names of modes. Let

P, Pi, Q and Qi be such mode variables.

2. Primitive mode: A primitive mode can be encoded as rec X.O : X in ACSR.

3. Parallel mode: Suppose P is a parallel mode with submodes, P P. and no

out-going transition. The ACSR translation for P is the following

P P1 II " II P.

4. Transition: Now we translate mode transition such that

T:p P Q.

First, we translate triggering condition. We have following three cases according to

the type of enabling condition.

19

* Event denoting entry into mode, -> M:

T t/ entryM?.recX.(exitP!.X + Q)

* Event denoting exit from mode, M->:

T exit .M?.recX.(exit_.P!.X + Q)

9 Event denoting status of mode, {M == true) or {M == false):

T VJ- trueM?.recX.(exitYP!.X + Q)

or

T V(fal•MeA?.recX.(exit"P!.X + Q).

5. Serial mode: Now we describe how to translate a mode M along with translations

Tt, T2, T, Tout which come from the mode M.

We assume that the mode M is the ACSR process. Also, we assume that T, is the

ACSR process associated with the transition T, and Tout is the transition with timing

constraint [I. ul.

M ...
T1l q...

Tout ..
AMT '- MAa(Tout, TI-+T2 +...T,)

+ M A,+, (Tout.T, + T2 +.. rT,)

+ M6,,(Tout, Tl+T2 +...T.)

Where the transition with timing constraint, Tout is defined as

Tout "V- recX.(exit-M!.X + Q)

A transition with the alarm t is translated into ACSR as follows:

MT VJ- MA,(Tout.T 1+T 2+...T,)

Note that in this ACSR transition. after passing t time unites, timeout transition (a

transition with alarm f condition) must be executed. regardedless of other transitions.

20
66.

Translation from ACSR to Modechart. Since a subset of ACSR can be regarded as

a restricted form of Modechart in terms of structure, translation from an ACSR term to a

Modechart specification seems straightforward as seen in Figure 3 except for synchronous

communication, priorities, resources and resource closure. We are identifying on how to

extend Modechart to support them. This study is to determine how MCTool can be used

- a graphical front-end to ACSR based tools.

I.)LP T OP)I. ala

IP At (TO.IL b) TraT)

4,PDQ X X[

Figure 3: An example of translation of ACSR to Modechart

Figure 3 illustrates how ACSR terms can be translated into Modechart. It is clear

that two prefix operators, '.' and ':' should be translated into serial modes, since the

semantics of prefix operators are identical to serial modes. Since Modechart semantics allows

control to stay in a mode until a triggering condition is satisfied, the semantics of modechart

craesponding the prefix a.P is slightly different from that of ACSR. This is because the

21

event a should occur at the same time the mode P' is entered. This problem can be solved

by adding an additional time-out transition from P' so that whenever the transition with

the event a is not immediately chosen, the next choice is an error state. Similarly, timeout

t in ACSR can be translated into serial mode with timing information [t, t).

The above identifies a subset of ACSR which can be translated into the Modechart

(defined in MCTool). To translate from the full feature of ACSR to Modechart. the following

notions should be supported: prioritized choice, resource closure operator, event restriction

operator, scope operator, resources. Section 3 describe a graphical language with these

operators.

Modechswt Model of the HARM Missile System. Figure 4 is the modechart model

of the HARM missile system developed by NRL 181. The above modechart illustrates HARM

missile system control flow but transition conditions are hidden. The following is a transition

condition from mode CPU.idle to mode MFSF.awarded.cpu of the missile systemf8j.

CPUg1idle-)NFSP.awwxdod-cpu: (M TS. waxtofalst & NKS. work-f alse

& PL. wait. &ase * PL..ork-also & DLP.waitomrf also k DLP.work==lalso

A UT.vaitmmfalse & UT.work-f alse o& NFSP.wait-true & !KFSP.suspend) I

(wrs.waitmfals & NTS.vork-false & PL.vaitwwfalse & PL.vork-wlals

& DLP. waitfalso A DLP.workufalse & UT.suspend k MFSPP.ait,-truo
A !NFSP.suspend) I

OT•.vaixtfalse & XrS.worke-false A PL.vits-falso & PL.work--fals

& DLP.suspend & UT. wait-fals & UT.vork-wfalso k MSP. ait=-true

& WNSPsuspend) I
(NTS.waitsef also A KrS.vorka-f also & PL.valtw-falso & PL.work--falso

A DLP.suspend A UTsupeoad & NFSP.wvat-true & !P•FSP.suspend) I

(NTS..ait,,talse k HTS.workuufalso k PL.suspond k DLP.vaxt-falso

A DLP.work-ifalso • UT.vait-f also k UT.work-false & MFSP.wajt--tru.

A ;SP.susped)

(NTS. aitmmtals. k NTS.vorkinfalso & PL.suspend k DLP. ait-=falso

A DLP.vorkýfalh. A UT.suspend k KFSP.ait-true & WMFSP.suspend) I
OrS . waita-fals A wTS. vork-f also & PL. suspend k DLP. suspend
A UT. wait-talo & UT.workaefalse & NFSP.mait-ttrue k ! MFSP.suspend) I

(1T7.waitftals. A NTS.works-false PL.suspend A DLP.suspend

A UT.suspend A NFSP.waitutru* A !IFSP.suspend) I

22

L~mmm-bp

Figuzre 4: Modechwt specification of the HARM Missile example

23

(NMT.ouspeud k PL.vaitnuf alas A PL-vorkm'f alas DLP.vait--talbe

k DLP .work--tala. A UT. waitw-alse A UT. vork-false & HFSP. vaitmutrue

& !WSP-suspe.4) I
(Mrr~sauaped & PL-wait-talso & PL.vork-wf alas & DLP-vait-f alas

& DL.vork-false A UTasuspeud & MFSP-va~it-mtrue & !MFSP.suspond) I
(NTSrsauspend & PL-vaits-falso & PL.vorkm-tals* & DLP.auspead
& UT.vaits-fals. & UT.vork-false & HYSP.wait--true & !MFSP.auspend) I

(WTS.auspand & PL..axt.--ala. & PL-vork-svfala. A DLP.suspend

A UT suspend A NFSP-vait--true & !NFSP-suspend) I

(NTS.suspend & PLasuspend & DLP-vaittwa~la. & DLP.vork-nfa~la
& UT. vaittawals. & UT. vorke-lalso & IUSP .vaitautrut & !NFSP. auaped) I

(NTS-suspend & PL suspend A DLP.vait-fa~la & DLP.vork--f ala.

& UT.suapend & NFSP.vaitwmtru. & !NFSP-suspend) I
(WTS. suspend A PL.. uspend & DLP - uspend & UT. vaita-f also
A WTvurkw-fal. A NFSP .welt-atrus A INFSP .suspend) I
(SITS. suspend A PL suspend & DLP -suspend a VT. suspend & MFSP.waxt-tru*

a !*MM -suspftd)

This is rather complex condition, which is resulted from trying to represent prioritized

schedubugS without the notion of priority.

ACSR Mode) of the Missile System. The following is ACSR specification for the

previous modechart example of H ARIM missile system. Because of t he not ion of priori ty. t he

AC-SR specification is quite simpler than that Of Niodechart.

24

HARM d•41 [MTSVIPLIIDPLjIUTUMFSPI {CPU}

MTS =l IDLE Ao (NIL, MTSWork, NIL)

MTSWork (1 {CPU,5}1 As (NIL, MTS, {}: MTSWork)

PL ,t IDLE A20 (NIL, PLWork, NIL)

PLWork t f {CPU,4}- A8 (NIL, PL, {} : PLWork)

DLP It_ IDLE An (NIL, DLPWork, NIL)

DLP.Work ti {CPU, 3}- A6 (NIL, DLP, {} : DLPWork)

UT !'! IDLE A&s (NIL, UTWork, NIL)

UT.Work 't {CPU,2})- A.(NIL, UT,{} : UTWork)

MFSP VJ IDLE A. (NIL, MFSPWork, NIL)

MFSP.Work VJ- {CPU, I})' As (NIL, MFSP, {}: MFSPWork)

25

3 GCSR: Graphical CSR

In this section, we present a graphical specification language (GCSR) that has a formal

semantics based on the Algebra of Communicating Shared Resources (ACSR). GCSR is
action based, and has constructs to build a modular (through limiting visibility of events) and
hierarchical (through node nesting) specification of a real-time system. Its semantics, ACSR,
is a formalism that supports the integrated specification of functional aspects of a real-time

system and its run-time resource requirements. The outline of this section is as follows.
Section 3.1 introduces the syntax of GCSR and validity criteria of GCSR specifications.
Section 3.3 describes informally the semantics of GCSR, then gives the translations between

ACSR and GCSR. Section 4 presents several examples.

3.1 GCSR Syntax

We now describe the building blocks of a GCSR graph, and how they are used to construct

a GCSR specification.

Building blocks. The basic building blocks in GCSR are nodes that can be connected
with directed edges. GCSR has three types of nodes (NIL, Dot, and Boz) and two types of

directed edges (ezternal exit, and internal exit.) Figure 5 shows the graphical symbols of

these building blocks.

Nodes. The NIL node is a special node that marks the end of a sequential execution. The
Dot node is either a specification point (place in Petri net terminology) where an event must

be instantaneously produced, or a specification point where the selection among multiple
computations (work to do) must be instantaneously made. The necessity of the special NIL

and Dot nodes will become clearer in Section 3.3 where we present the semantics of GCSR.
A Box node represents a computation component that may consume resources and time. A

Box can either be primitive, i.e. its internal structure is hidden, or complex, i.e. its internal
structure is visible. A complex Box can contain one component or two (or more) components

that are executed concurrently. A reference Box refers to another GCSR specification; such
"a node allows stepwise and compact graphical specifications.

As the extended BNF4 for the GCSR structures in Figures 6 and 7 shows, a node has

"a name that uniquely identifies it: a primitive box has a possibly empty set of resources

4We Mowed the notation of programming languages as used in [30. 191

26

NIL NIL node

IPtrumve Box node does no have an niemna smaU

]Com Box Doce bo a) i.a, SWXCUnSdo can be two copoe run w pwafiel

Mu(m and second boxes), or o coe box).

I I Retkoumce node
i ~ I

Exmrmal ext edge
"Te adc=e node is my mode,

Q -.Q unlabeled edg

Z1-eveo uedge

Imuxu exit edge

LI1~!~(O) Te sowce node is any Box node.

Figure 5: GCSR types of nodes (top) and edges (bottom).

27

(Resoumce); a complex box has in addition a set of dedicated resources (Close), a set of

observable events (Obseru), a set of local synchronization events (Restrict), and a list of

GCSR components representing the internal structure it contains. In the case of a reference

box, these attributes are deduced from the GCSR graph that defines it.

Edges. Nodes can be linked together with edges that do not cross node boundaries to form

a GCSR Specification. There are two types of edges: internal-ezxit edges to reflect the end

of execution from inside a Box node and to transfer control to another node at a higher

level, and ezternal-eixt edges to reflect sequential flow of control among nodes at the same

level. The two types of edges simplify a hierarchical graphical specification and make the

transition semantics unambiguous. While the activation of an internal-exit edge depends on

the source node, that of an external-exit edge depends on the environment. This semantic

distinction between the two types of edges will be addressed in Section 3.3.

An internal-exit edge always has a Box source node, and is labeled with an event, "exit

event" (which corresponds to "exception" in ACSR). An external-exit edge, on the other

hand, can be either unlabeled or labeled with an event or time. An unlabeled edge and an

event labeled edge can have either a Dot or a Box source node, while an edge labeled with

time always has a Box source node. Although not shown, edge label [tl, t2] is a short hand

notation for multiple edges tI,..., t2.

GCSR Specification. Figures 6 and 7 show the extended BNF for GCSR. We use the

following convention for extended BNF: A production (e.g. A == B) has a name (A) and a

right hand side describing its components (B). The labels N, L, ... etc. are used as name tags

to identify the component of the production. The asterisk is used to denote a list/sequence

(e.g. A -- B means A is a list of B elements). Double asterisks are used to denote a set

(e.g. A =- B means A is a set of B elements). The semi-colon (e.g. A == B ; C) is used

to aggregate components in a production (A has two components B and C). The vertical bar

(e.g. A = B I C) is used to denote choice in a production (A has either component B or C).

A GCSR specification is a component, which is a set of connected nodes, one of which is

a designated initial node. A GCSR component also has attributes consisting of: an optional

name, a set of resources, and a set of observable events.

Since a complex Box node has other nodes nested inside, we distinguish between levels

at which a node resides and at which its components reside. A complex Box "encapsulates"

the nodes it contains inside, and makes them unaccessible from outside its boundaries. That

28

GCSRCornponent ==N GCSRNode**;
I GCSRNode;
L Link";
A Attributes

Attributes ==Name :Identifier;
Resource :Identifier";
Observ :Identifier

GCSRNode ==Name :Identifier;
Nil :NilNode

I Dot :DotNode
I Box :BoxNode

BoxNode ==Prim :PrimitiveNode
I Cmplx :ComplexNode
I Ref :ReferenceNode

NilNode ==NULL

DotNode ==NULL

ReferenceNode ==NULL

PrimNode ==Resource :GeneralldSet
ComplexNode ==Resource :GeneralldSet;

Close GeneralldSet;
Observ GeneralldSet;
Restrict :GeneralldSet;
Inside : GCSRComponent*

Link ==S : GCSRNode;
T : GCSRNode;
Label :InternalExit IExternalExit

InternalExit ==Event

ExternalExit ==Time I Event INULL
Figure 6: Extended BNF for GCSR

29

Identifier =- STRING I IndexedVar;
IndexedVar -= STRING; Index
GeneralIdSet == STRING** I IndexedVar
Index - Min; Max; Step; Mask
Min -- integer expression
Max -= integer expression
Step -- integer expression
Mask -= boolean expression
Event == STRING
Time == INTEGER I o

Figure 7: Extended BNF for GCSR (continued)

is, the nodes inside a complex Box node in a component belong to a different component

from the one to which the complex Box belongs, one that is inside the complex Box node.

Thus, the edges listed in the Link set (Figure 6) of a GCSR component connect only nodes

that are at the same level as the initial node of the component.
Note that it is possible to transfer out of a nested node to a node adjacent to its ancestor

node using an internal-exit edge. That is, our level restriction is "syntactic", not "semantic",

restriction to prevent the crowding of edges in GCSR specifications.

3.2 Valid GCSR Specification

Obviously, not all possible GCSR specifications represent valid ACSR specifications. We

now define a set of criteria for a GCSR specification to be valid.
Nil, Dot, primitive Box, and reference Box nodes are the basic nodes that do not contain

an internal structure inside. A complex Box node contains internal components. A GCSR
specification can be built from these nodes according to the following definition.

Definition 3.1 A GCSR valid component, (N, I, L, A), is a connected graph that consists

of a set of nodes, N, one of which is a designated initial node, I E N, and the connection

edges, L, and attributes,A, satisfying the following rules:

1. Any Nil node does not have an outgoing edge; that is, a Nil node is always a sink node:

Yl E L : I.S.type $ Nil

2. Any Dot node has at least one outgoing event or unlabeled edge that connects it to

30

another node at the same level, i.e. without crossing any node's boundaries:
VnEN: if n.type =Dot then 31EL: l.S=n

3. Any Box node can have at most one outgoing edge labeled with time, and possibly
several outgoing event-labeled or unlabeled edges and external-exit edges that connect

it to other nodes at the same level:

VnEN: ifn.type=Box thenVIE L: ((l.S = n A l.type = Time) -- (VI'E

L - {f1}: l.S n V I.type $ Time))

4. For each complex Box node, the GCSR components inside must be valid and do not

share nodes:

Vn E N : if (n.type = Cmplr A n.Inside = {GI,...,Gk}) then (V1 _< i < k

Giisvalid) A (V15<i_<k: VI<_j<_k: (i6j----NinN =0))
where VI < i :_< k : Gi = (Ni, Ii, Li, Ai)

5. Attributes are valid as follows:

Name: All component's names are unique.

Resource: The Resource set of a complex Box node is the union of the Resource sets of
its subcomponents:

Vn E N : if (n.type = Cmplx A n.Inside = {G1 , ... , Gk})then n.Resource = A1.Resource U

U A2.Resource
where VI :5 i < k : Gi -- AN,Ii, Li, Ai)

The Resource set of a component is the union of all the Resource sets of its Box nodes.

A.Resource = U n.Resource
nENAn.tpef=Box

Obeerv: The observable event set (Observ) of a complex Box node is a subset of the Observ

sets of its subcomponents. (The additional observable events can be used to synchronize
among the subcomponents inside the Box.)

Vn E N : if (n.type = Cmpiz A n.Inside = {Gl, ... , GCi})then n.Observ C (AI.Observ U

U Ak.Observ)
where VI _< i < k :Gi (N., Ii, Li, Ai)

31
¼

The Observ set of a component is the set of events labeling its edges (in L) union the

Obaerv sets of its complex and reference Box nodes:

A.Observ = U n.Observ U U tLabel
nENAntAVpe-Cmp1z IELAI.type=Event

Restrict: The restrict event set (Restrict) of a complex Box node is a subset of the Observ

sets of its subcomponents:

Vn E N : if (n.type = Cmpix A n.Inside = {Gl,...,Gk})then n.Restrict C (A1 .Observ U

... U Ak.Observ)
where V1 < i <5 k : Gi =- (Ni, Ii, Li. Aj)

Observ U Restrict: All events inside a complex Box are accounted for:

Vn E N : if (n.type = Cmplz A n.Inside = {Gl,...,Gk})then (n.Observ U n.Restrict) =

(AI.Observ U ... U Ak.Observ)

where V1 < i 5 k : Gi = (Ni, 1j, Li, Ai)

Reference node: The attributes of a reference Box are those of the GCSR component

that defines it.

These above validity criteria are needed to define the semantics of a GCSR component

using ACSR.

3.3 Informal GCSR Semantics

In this section we first describe informally the semantics of GCSR, then the translations

between ACSR and GCSR. These translations assume that ACSR is augmented with a

binding operator that binds a process term to a process name, generalized parallel and
choice operators, as well as indexed variable names.

A GCSR (valid) component specifies the sequential flow of control among nodes repre-

senting units of work (Box nodes) and points of undelayed communication or control switch

(Dot nodes). In our formalism, work is represented in terms of resource and time usage. Con-

trol flow in a GCSR component is indicated through directed edges connecting the nodes.

Complex Box nodes allow compact specification of concurrent components as well as execu-
tion of a component under the control of the environment which can interrupt it and time

it. Finally, nondeterministic execution is represented by multiple edges out of a (non Nil)

node.

32

Nodes. A unit of work is represented by a Box node. It can represent either simple resource
and time consumption (primitive Box), or multiple (or one) units of work that are executed

in parallel (complex Box) and possibly under the (external) control of the environment which
can time their activation and interrupt it. A complex unit of work can also relinquish control

any time during its activation and indicates the direction of the control flow; we call this type
of control flow internal-exit, since the complex unit of work internally ends its activation, as
opposed to being interrupted by its environment. This explains the two types of edges in

GCSR. In ACSR terminology, a simple unit of work is an action, while a complex unit of
work is a process.

As an example, consider the railroad crossing example of Figure 20. The Box nodes with
the empty set inside represent simple units of work, idling, where no resources are used.
In the specification of the Gate, the complex work representing opening the gate can be
interrupted by the event signaling to start closing the gate (sdn), or can finish its activation

and proceeds to the initial state of Gate through the internal exit signal open.
The second type of nodes, Dot nodes, represent two specification scenarios. The first is a

specification point where an event must be produced with no delay; this is represented by an
event labeled outgoing edge. The second is a specification point where a unit of work must
be started with no delay; this is represented by an unlabeled outgoing edge whose target

node is a Box or Nil node. For example, consider again the Gate GCSR component in the
railroad crossing example of Figure 20; the initial node is a Dot node with two outgoing
edges. This represents a point where either the idling unit is started or the event sdn is
produced; the choice among the two possibilities is made at the instant when the initial Dot

node is activated, and it depends on the environment.

Node activation. When a GCSR component is activated, control enters its initial node.
The flow of control stops when it reaches a Nil node, at which time the whole GCSR com-
ponent is deactivated. The activation of a primitive Box node is subject to the availability
of its resources. Finally, when a complex Box is activated all its subcomponents are simul-
taneously activated and remain active for the same period of time. In the railroad crossing
example of Figure 20, the Train, Control, and Gate are all activated the instant the Railroad

GCSR component is activated. Since there are no edges out of the initial node of Railroad,
this latter remains active as long as its subcomponents remain so.

33

Unlabeled edge. An unlabeled edge is taken instantaneously if it leads to a node that
can be activated. Such an edge allows sequential composition of different types of nodes;

that is, it is used to describe a sequential execution where the next component is either a

complex (complex Box node) or a simple resource and time consuming component (primitive

Box node.) Unlabeled edges allow compact construction of specifications.

Event labeled edge. An event labeled edge that links a Dot node to another node is taken
the instant the source Dot node is activated and if the environment allows the production

of the labeling event. An event edge out of a Box node is taken any time the environment

allows the production of the event and while the source Box node is active; this represents
an interrupt and has a higher priority than edges inside the source Box node. The transition

results in producing the event labeling the edge.

Time labeled edge. An edge labeled with time (t) represents the time-guarded execution
of work represented by the source Box node. Once the source Box node is activated, control

remains there exactly t time units after which it is instantaneously transferred to the target
node of the time edge. It is important to note that the source Box node must remain

constantly active for the t units. If it requires more than t time units, it is aborted; on the
other hand, if it executes for less then t time units, the timed edge will not be taken. A
timed edge is also a type of interrupt and hence has a higher priority than edges inside the

source Box node.

Internal-exit edge. Any time during its activation, the source Box node can produce the

exit event to signal internal end of execution. Control is then instantaneously transferred
to the target node of the internal-exit edge. The internal exit event is a type of local

synchronization between the internal structure of the Box source node and its interface; that

is, this event is not visible anywhere else in the system.

It is important to note that control remains a non zero amount of time only inside Box

nodes, and that all transitions are instantaneous. The activation of the target node of a

taken transition might be subject to the environment. For example, if the target node is a
primitive Box node whose resources are not available the instant the transition is taken, the
system enters a deadlocked state after the transition is taken.

"Modularity. Modularity is supported in GCSR through the visibility scope of the commu-

nication events. The set of observable events of a GCSR component, are visible everywhere.

':! 34

On the other hand, the set of restricted events in a complex Box node are used for local
synchronization among components inside the Box, and hence are not visible elsewhere out-

side the Box's boundaries. Such a scoping rule has the advantage of limiting dependencies

among nodes in a GCSR specification. This advantage is important in a hierarchical design

of a real-time system.

3.4 Formal GCSR Semantics

Figure 8 shows the translation of ACSR terms to a GCSR component based on structure of

the ACSR terms. Figure 9 shows the translation of the binding operator, indexed variables
as well as generalized parallel and choice operators. The function g(.) translates an ACSR

term to a GCSR component.

Note that the direct translation of ACSR terms does not create a GCSR graph where
a Box node has an edge labeled with an event or a Box node with multiple event egdes.

Such a graph can however be obtained through the simplifications described in Figure 10.
Also, note that the translation of an ACSR term to a GCSR component does not introduce
cycles. Graphical reductions as described in Figure 12 allow the simplification of the graph

and creation of cycles.

Graphical reductions. We divide graphical reductions into two classes. Figures 10 and 11
show simple graphical reductions that:

1. merge "identical" portions of the graph;

2. remove unnecessary unlabeled edges that can be due to unnecessary parenthesis in the

ACSR process;

3. remove edge labeled with infinity and its NIL target node;

4. merge consecutive "identical" activities; this applies the time additivity property of

ACSR;

5. remove extra structure inside a Box, that denote recursive usage of resources; this is
due to the fact that time is discrete in ACSR;

6-7. remove extra Box node nesting that can be due to resolving Reference Box nodes or

unnecessary parenthesis in the ACSR process; (This simplification rule also makes use

of the ACSR Close(5) and Rest(6) laws [6].)

35

A:P g(p)

C.P C OP)

PI + P2
g. c I... 8(PI)

g(P2)

Attributes:

Pt II P2 14 Restrict
g(PI) g(12) Observ

Resource
Close

Attributes:

SP\F '% Restrict- F
S(P)

Attributes:
N4 Close: !

(711 3(P)

PscopaL I (Q, R. S) gF77zcU R)

S(S)

x ' x. '

a variable nods -....-

ree X. P

StupI: meu P
S8@p2: irital nods of g(P) is called X S(P)
ThOe uaiagle is a repiesamtlmo
of Pvs OCSR comnpomt

Figure 8: ACSR to GCSR translation.

36

p-Q

I. conscmac Q

I. Bind initial node ofQ toP X

Paruiel QIP. tI. A J U)

St)(
,

SP 11 o(12Y

x*P 11)

Shi~P NSI~ S(21

Figure 9: ACSR to GCSR translation

37

B

2) ---*<Upif D

LV- NE ------ D
NJ N2N

4) LIJJLL-h non [:jQý
C~iandow N I .Av~uwvw*2Anwiha NAUnbnetswuNi A~butecs

Ni

N2

Comitiom N2 is pnatume Ban
N2.Ragowg ýNI.Resaas

Figure 10: GCSR simple graphical reductions and short hand notations.

38

N1 NI

*N2

S(P) (P):x(3)g(PI) g(P2) g(P3)

*widw N I.evc -wN.eti

N I.I ==N.k

6) I N

COwdidoas: NI.RauICt - N2.Resmc

NI Ckose - N I.Ckws

N2ý* . Rsuc NI Rasowpt1) hic[. ice)

9)Z C 1 S ------N- - I CIs

II g(PO

Figure 11: GCSR simple graphical reductions and short hand notations (continued).

39

P ~Bmnd rebf~tweMe

P Unfold

Figure 12: GCSR complex graphical reduction

40

8-9. give a template representation as a short hand notation for generalized ACSR parallel

and choice operators.

Figure 12 shows more complex graphical reductions to resolve Reference Box nodes by 1)

binding them to a node, or 2) replacing them with the process definition (unfolding). Top,

sink reference nodes in Figure 12 are bound to the initial node of the corresponding process.

This reduction is allowed only if the reference node and the initial node of the corresponding

process are at the same level. Bottom, a reference Box is replaced by the GCSR component

defining it. Further reductions would be based on the ACSR laws.

To define the semantics of GCSR, we have developed an algorithm that translates a

GCSR component to an ACSR term. This translation assumes some validity criteria of

GCSR components. These criteria are described in Section 3.2.

4 Examples

In this section we present several examples of GCSR specifications and their corresponding

ACSR processes. We use the railroad crossing example to illustrate how some of the graph-

ical reductions described in the previous sections can be applied. We do not show all the

attributes to make the figures more readable, and we list the resource set inside primitive

boxes.

Telephone. Figure 13 shows the GCSR specification of a telephone system and its corre-

sponding ACSR specification. The phone is initially idle until it receives the signal that the

receiver is off hook. At this time, the user has 20 time units to dial the first digit (signaled

by the reception of digit.) If the user fails to dial the first digit within the 20 time unit

deadline, a the phone produces a reorder signal and returns to its initial state. If the user

dials the first digit within the deadline, he/she must dial the remaining four digits within 15

time units relative to dialing the first one. An additional timing constraint on the last four

digits is that any two consecutive digits must be dialed in less than five time units apart.

Any time this timing constraint is violated, the phone issues a reorder signal and returns

to its initial state. On the other hand, if the last four digits are dialed according to this

deadline and within the 15 time units from the first digit, the phone issues a connect signal

and allows the user to talk. When the user puts the receiver on the hook again (signaled by

the rtception of onhook) the phone returns to its initial state.

41

OH - DLE 20 (N L reorder , -)Phn,(ii,1 digit" i

Df5J~~I t e~t,).I
Talk (onned,1).(IDE A,,~ (NILNILCodeokd1.Pon)

Figurello 13 TeepoeIxmLe

42EL

Mouse. Figure 14 shows the GCSR and corresponding ACSR specification of a mouse

example. The mouse is initially idle until its button is pressed down (down event is received.)

This is the beginning of a click that might be followed by another clock to signal a double

click. A single click consists of pressing the mouse button down then up. A double click

consists of two consecutive single clicks that happen within 500 time units and such that the

down and up of each single click are less then 200 time units apart. Each time the mouse

button is pressed down for 200 time units or more, the mouse signals hold, then when the

button is pressed up the mouse signals release and returns to its initial state. The mouse

also signals either click or doubleclick according to whether a signal click or double clicks

happened.

Railroad Crossing. Figure 15 shows the ACSR specification of the standard Railroad

crossing system with fixed parameters. The system consists of a train (Train), a controller

(Control) and a gate (Gate), that coordinate their activities through the synchronization

events srn, adn, sup, and srp. The detailed description of this example can be found in [7].

Figure 16 shows the direct translation of ACSR specification to GCSR, and Figures 17-19

show how the GCSR specifications can be simplified using graph reductions. The steps are:

Figure 17 shows 1) Unfolding applied to Train, Train', Gate and GD'; the reference nodes

were replaced by their corresponding process graph. 2) Unfolding applied to all references to

IDLE, then the simple reduction where the recursive consumption of no resources is replaced

by a primitive Box with no resources (reduction number 4). 3) A simple reduction in GU

where the infinity time edge with target NIL was removed(reduction number 2). In Figure

18, further unfolding step is applied on Train and Gate of the railroad crossing example of

Figure 17, Figure 19 demonstrates further unfolding applied on Train, Gate and Control of

the railroad crossing example of Figure 18. The reference nodes have names of nodes that

are part of the graph and at the same level. They are removed and their incoming edges are

bound to the actual node. Finally, all reference nodes are removed in Figure 20.

Sensor. Figure 21 shows the GCSR specification of a Senor system. It consists of a data

reading unit (ReadSensor) and a data processing unit (Server), that communicate through

a shared buffer (B). Mutual exclusive access to the buffer is enforced by a binary semaphore

(Semaphore.) ReadSensor accumulates data for three time units, then averages it in one

time unit, and stores it into the buffer in two time units. Server is initially for six time

units, to avoid reading out of an empty buffer. Once active, Server waits for a read signal

43

Otusrvmjdown) U Obswv*D[0])
Resoxew. ReaoumcesUDf)
OCkw - (

D[ij 14,O. 19") D[4+1]: D1)0

Dfill's &urbute: ??I- - -
Obeialup) UObeerv(D1411DU Otbev(DUri]) mue
Resorce.. Rource([D~i.1l) U Rmeov0eDUr,]) DU[1]:

DU(II PA. 499) DUri+1 ~ DU[5001

*DUD~i. 01

10mk w 0 i I -- --

? ---- -----1

<% ýf doblecick!
DW

DUDf5O0j]

mouse = IDLE 6. (NIL, NIL, (down, 1).DjO])
D~i] = 0: D~i+ 1] +(up, 1).DU~i] 0___ <i <200
D[2001 =(hol, 1).rec X.(@: X + (up, 1).(release, 1).mouse)

DU[i] = 0: DU[i + 11 + (down, 1).DUD~i] 0 < i < 500
DU[5001 = (di!c-k, 1).mou~se

DUD fi,jI = 0 :_DUD[z + 1, j + 11 + (up, 1).(doRble-click, 1).mouse 0! < i < 500,0 < j < 200
DUD[i, 200] = (7click, 1).D[2001 0:< i < 500
DUD f500,j] = (click, 1).Dfj] 0: <j < 200

Figure 14: Mouse Example.

44

//ACSR program and specification for standard railroad
//crossing problem subject to the following assumptions:
//- Train may return before gate is fully up
//- All parameters are fixed
/Implementation

Train = (Nc,1).(Fm-,1).(IDLE A6o(NIL,Train',NIL));
Train' = (Ic,1).(IDLE A2o(NIL,Train", NIL));
Train" = (Pc,1).(-•p,1).(IDLE 630(NIL,Train"',NIL));
Train"' = IDLE A.(NIL,NIL,Train);

Control = {}:Control + (srn,1).(sdn, 1).Control + (srp,1). (1p, 1).Control;

Gate = f}:Gate + (sdn,1).GD;
GD = (Bdn,1).(IDLE A40 (NIL,(Dn,1).GD',NIL));
GD' = {}:GD' + (sup,1).(Bup,1).GU;
GGU = (IDLE 64o(NIL,(Up,1).(-pe-,I).NIL,NIL)) S 1 "(Gate, NIL, (sdn,1).GD);
Railroad = (Train 1I Control I1 Gate) \ {srn,srp,sdn,sup};

Figure 15: Rail Road Crossing Example ACSR Specification

45

Trun Tnkin'

"w Nc S"'' 60L W-~ ILE 0 ---'-- Train"

Train"~in

0 ME Trdain, IDLE - fai

,cowxw:

Xam? sdo! *-

GD

*As-" IDLE 40b.- D

ad?
GD

I G-U

IlD-- a * D
___ __ __ lfty - - -

IDLE. t-SO6f NIL NIL
sup? ' ,open? '

GU

Raikoin
* O 0 I '

Fiue1:Raeihxa Crssn unxample:up GCS Seiictofr CRemsiFgue1

O~cJ~c~a46

Train Train. I - -2

IIDLE 4 IDE II-OL Train-
* .a'Ta a

- - -. - - -i -. -

Tram
Trin...

)' P?30 : , X
SIDLE r-"Train' .. IDLE Tai

* * ,, ID, "Train '

*!

Convo

-a-a

' : GD

-4IDLE 40 D' a

ads?, ----- a

I aU

"a, GD

I)Ol aa? a a-GD' a. .. a a ,- GD :

,40 Up? open! Lafty a - a

sup ai? a - a -n a

a a a i

Tri Suftv, ome

; Figure 17: Example of graphical reductions applied to the example of Figure 16

%.7

a -a•l i i i i l l l i i i l * -ai

Thmi
c? u!! R{ 600 DR? Pc?-- . -

Opesn"

isOD isGD'

is GU

Figure 18: Further unfolding applied on Train, Gate of the example of Figure 17.

at which time it tries to get access to the buffer to copy the value from the buffer to a display
(D); copying and displaying the data takes each one unit unit. Further simplifications on
the initial nodes of Server and ReadSensor are possible.

Router. Figure 22 shows the GCSR and corresponding ACSR specifications of a router's

specification RouterSpec and implementation RouterImp. The router is initially idle until it

receives dataln signal. It then reads the data in one time unit, tries to send in two time units

at which time it signals an acknowledgement ack, then waits one time unit before returning
to its initial state. The implementation of the router, Routerimp, shows the details of the

sending unit. It consists of a unit to prepare the datagram for transmission, synchronizing
with a unit that gets transmission permission. If the router has permission to forward the
datagram, it carries the send in one time unit and signals a success acknowledgement, other

wise it executes an error handler routine and signals failure.

48

Tim
p *p 30

60 Ic? [Ii 20

Figure 19: Further unfolding applied on Train, Gate and Control of the example of Figure
18.

49

R"ft-(n~%ftXAP

sup-UP)

Timd

--- -N --? -- -- -- -- 60- -- --i-c- -- --20-- --Pc'- --

S$1M?

501

Obeuv a (mad) Same
Resaume w(A.B.DS)I

lesM Dci Auzgmwm: ra? W S
Oburva (teead)B)(

Restiag (wakt sips[l)

Resmasc =A.B.D.S)

Figure 21: Sensor Example. Reference nodes have been replaced.-

Sem~h51

Re--K~ R-zaM U SaidDaft

down?
It RcadDaf -

RaMu- Radmam U Prq=uTmink U Cossftumaac U CulySad U Enur

Rmwc@WmpuiTammm U Gafutmwwa U CurySed U Enww

RouterSpec = IDLE A,, (NIL,NIL,dataln.(l1,ReadStep):(2,SendStep):ýiý { }:RouterSpec)
Routerlmp = IDLE A,, (NIL, NIL,dataln .(1,ReadStep): Process)
Process = Process' A 3 (NIL, Routerlmp, NIL)___
Process' = ((1 ,PrepareTransmit): (granted. (1 ,CarrySend):0uccess. (oo, f)):NIL +

denied. (1,Error):ajf~u-re. (oo (1): NIL)

(1,Get Permission): (granted. (oo,{I}): NIL +
denied: (oo,{f}):NIL)) \ (granted, denied}

Figure 22: Router Example

52

5 Automatic Analysis Techniques

To support the automatic analysis of GCSR specifications, we have investigated state min-

imization algorithms and verification techniques that we plan to implement. Section 5.1

briefly explains the state minimization algorithm we plan to implement. Section 5.2 identi-

fies a set of equivalence relations that are weaker than the ones we currently have. We believe

that these weakLr notions are much more practical than our current notions of prioritized

strong and weak bisimulations. Section 5.3 describes logic that we have designed to facilitate

the partial spetification (i.e., requirement specification) and model checking of ACSR.

5.1 State Minimization Algorithms

One of the goals of this project is to identify efficient algorithms for the automated verifica-

tion of distributed real-time systems based on state space exploration. There exist several

automatic verification techniques for finite state systems. Such techniques are usually based

on state space erploration. That is, they first identify a set of states that are reachable

from the initial states and then analyze this set for verification. They are used for proving

absence of deadlock or livelock, for proving properties expressed in propositional temporal

logic or real-time logic, and for determining trace equivalence, testing preorder or bisimula-

tion equivalence, etc.

There exist several state minimization algorithms for a labeled transition system that

collapse a set of states that are bisimilar into an equivalent class [17, 33]. These algorithms

require the generation of the entire state space, including unreachable states. Thus, they can

be applied only to systems with a finite, relatively small state space. It would be desirable to

explore only the reachable portion of the state space. Bouajjani et al. have developed such

an algorithm to find the minimal reachability graph for unlabeled transition systems [5]. The

algorithm performs reachability analysis and minimization simultaneously. This algorithm

is very effective when the reachable portion is much smaller than the full state space. But,

unlabeled transition systems used by them are not suitable for describing concurrent systems

since they cannot capture internal actions and communication actions. Our algorithm is an

extension of the algorithm by Bouajjani et al. [5] to a labeled transition system.

The basic idea of minimizing a transition .Jstem is to find a partition of states such that

all the states in each class of the partition are bisimilar and all bisimilar states are in the

same class. The following describes the basic idea of our algorithm [18]:

repeat

53

pick a reachable class X;

if s -A Y and s' 74 Y for s, s' E X then

split X

until no more splits possible

Starting from the class consisting of the entire states as the sole member o: the initial

partition (that is, po = {Q}), the algorithm tries to iteratively split classes in the current
partition until it is no longer possible. The splitting procedure keeps states in the same
class until they are shown to be non-bisimilar. Such a class is called stable with respect to
the current partition in the algorithm. In other words, for a given initial partition po, the

algorithm repeatedly split classes that are not stable with respect to the current partition
until the coarsest stable partition is found. The coarsest stable partition is equal to the
greatest bisimulation. We note the algorithm may not always terminate. It terminates only
when the greatest bisimulation has finite number of equivalence classes.

Figure 23 gives the comparison of the _•sults of the Paige and Tarjan's algorithm [33]
and our algorithm. The partitions are the same except for unreachable state space. But,
Paige and Tarjan's algorithm explores the whole set of states including unreachable states.
Thus, our algorithm is based on a more efficient algorithm for the algorithm developed.by

Paige and Tarjan.

reachabit SPe unreachable space reachable sp It space

(a) The Result of Paige and Taijan's Algorithm (b) The Result of Our Algorithm

Figure 23: The Coarsest Partition

54

E L... - . . " , , i- i i • I I I "~PII

5.2 Additional Equivalence Relations for ACSR

Strong equivalence is a useful notion for comparison of agent expressions, but for many prac-

tical applications weaker forms of equivalence suffice. The need to weaken the requirement

regarding exact matching of r actions is well known, but ACSR introduces several other

areas where requiring strict equivalence between expressions is cumbersome. For example,

although precise priority values are required for each event and resource in an action, fre-

quently it is the case that the relative priority levels are more important than the exact

values.

The sections that follow will detail a number of equivalence relations weaker than strong

bisimulation, but perhaps more useful for comparison of realistic implementations and specifi-

cations. In the remainder of this section, terms used throughout the definitions of equivalence

are presented.

Definition 5.1 (Substitution of Terms) The agent expression A{E/X}, where A and E

are agent expressions and X is a process variable, shall denote the agent resulting from the

syntactic substitution of agent expression E wherever X occurs free in A.

Definition 5.2 (Sequential ACSR) Full ACSR's sequential combinators form an algebra
that we shall refer to as sequential ACSR. It has the following syntax:

P ::= NIL I A:PI (a,n).PIP+P I recX.PIX

The semantics of each of the operators is identical to the meaning assigned in full ACSR,

including the definitions of preemption and prioritized transitions.

5.2.1 LTS Based Equivalences

Unprioritized Congruence. Although priorities are important for mediating competi-

tion for resources and implementing preemption based synchronization, the final determina-

tion as to whether or not two agent expressions are equivalent is likely to have more to do

with the sequence of event labels and resource allocations generated than with the precise

priority value associated with each event and resource. For example, consider the following

processes:

P = (a, 1).(r, 1).(b, 1).NIL

Q = ((a, l).(sync, 1).NIL 11 (g-', 1).(b, 1).NIL)\{sync}

55

Since P and Q generate the same traces of event labels (a, then r, and then b), it is appealing

to consider them equivalent in some sense. However, the semantics of synchronization require

that the resulting r event be assigned the sum of the priorities of the complementary events.

Therefore P 76,1 Q since the priority of the r step in P must be 2 if P and Q are to be

strongly bisimilar.

One way to address this problem would be to ignore priorities altogether in making the

comparison, but since priorities play an importan role in defining behaviors within an agent,

the equivalence relation that resulted would be of little use. Instead, we define the following

equivalence that tempers the notion of priority-free equivalence with the preservation of

relative priority within agents.

Definition 5.3 (Unprioritized Equivalence: =€) P =-V Q iff, for all a E V,

(i) Whenever P ---,, P' then, for some Q' and /3 E V, Q - ,, Q', l(a) = I(#3) (for instanta-

neous events) or p(a) = p(p3) (for timed actions), and P' =I Q'.

(ii) Whenever Q ---+, Q' then, for some P' and 3 E V, P F,, P', l(a) = 1()3) (for

instantaneous events) or p(a) = p(3) (for timed actions), and P' =, Q'.

Proposition 5.1 Unprioritized equivalence is an equivalence relation.

Proposition 5.2 Unprioritized equivalence is not a congruence relation for sequential ACSR.

It follows directly from proposition 5.2 that unprioritized equivalence is not a congruence

over full ACSR, since any counterexample formulated in sequential ACSR will also hold for

full ACSR.

Unprioritized equivalence fails to be a congruence for sequential ACSR because of the

interaction between initial prioritized transitions and transitions they may be combined

with in an unprioritized choice. We can obtain a weaker equivalence that is a congruence

for sequential ACSR by requiring equivalent priorities in initial prioritized transitions.

Definition 5.4 (Simple Unprioritized Congruence: €,) P -#, Q iff, for all a E D,

(i) Whenever P P-4, P' then, for some Q', Q -,, Q' and P' =,t Q'.

(ii) Whenever Q -,, Q' then, for some P'. P -,, P' and P' =$ Q'.

Proposition 5.3 Simple unprioritized congruence is an equivalence relation.

56

Proposition 5.4 Simple unprioritized congruence is a congruence relation for sequential

ACSR.

For full ACSR the situation is complicated by the existence of operators that can change
priority relationships that exist deep within an agent. For example, consider the following

processes:

P = (ei,l).(e2,1).({(ri,O)}: R + {(r2,3)} :R 2)

Q = (e,,l).(e2,1).({(rl,3)} :R + {(r 2,0)} : 2)

s = [X1{71,,2}

That P ,-,j Q follows from the definition of simple unprioritized congruence sinace the initial

event steps are identical and the same nondeterministic choice between r, ind r 2 exists in
both P and Q. However, S{P\X} jV S{Q\X} since closure with r, and r2 introduces

preemptions into P and Q eliminating the possibility of P =* R, and Q =* R2 .

Proposition 5.5 Simple unprioritized congruence is not a congruence relation for full ACSR.

Proof: By the previous counter-example. 0

To simplify the definition of a more robust unprioritized congruence we first define the

following close operator for sets of resource, priority pairs. We then define unprioritized

congruence in two steps, the first addressing potential preemptions that could arise from
application of the ACSR close operator, and the second addressing the need for an exact

match of priorities for the initial step of a process.

Definition 5.5 Given two timed actions a and 1, close(a, 3) will represent the addition of

resource and priority pairs to a that is necessary to insure that l(a) D 1(O). Formally,

close(a,O) = {(r,p)l(r,p) E a V (r o l(a) Ar E I(13) A p = 0)).

Definition 5.6 PAQ iff, for all a E V,

(i) Whenever P -Z P' and -:to' E 2) such that a -< a' or close(a, a') -< a' and P ---' then,

for some Q' and 3 E D, Q + Q', -'30' E V such that 0 -< 1' or close(/3, 0') -< 13' and
Q -- , I(a) = l(13) (for instantaneous events) or p(a) = p(13) (for timed actions), and

P'•Q'.

57

(ii) Whenever Q -, Q' and -3a' E V such that a -< a' or close(a, a') - a' and Q -- then,

for some F' and 3 E V. P --, P', -,3#' E D such that 3 -< 3' or close(i3, 3') "• 3' and

P -, l(a) = 1(13) (for instantaneous events) or p(a) = p(O3) (for timed actions), and

Definition 5.7 (Unprioritized Congruence: ;,€) P • Q iff, for all a E D,

(i) Whenever P - P P' then. for some Q', Q - Q' and P';:Q'.

(ii) Whenever Q -,. Q' then, for some P', P -g P' and P'2fQ'.

Proposition 5.6 Unprioritized congruence is a congruence relation.

r-FIree Congruence. The development of r-free equivalence for ACSR parallels the de-

velopment of weak bisimulation (observation equivalence) and observation congruence in

CCS[31]. We begin by introducing a relation which allows all r actions to be ignored, of-

fering an equivalence that is useful for comparing complete agents, but fails to satisfy the

requirements for a congruence.

As in OCS, we define an operator to "hide" the r events in a trace, and a new transition

relation that allows r actions to be added at will.

Definition 5.8 If t E DE', then ! E DE* is the sequence obtained by deleting all occurrences

of r from t.

Definition 5.9 If t = a, ... an E V*, then E E' if

E(--)" --+ (., -...(..)- * -,'

We shall also write E =4, to mean that E = E' for some E'.

Definition 5.10 (r-Free Equivalence: =y) P =f Q if, for all a E V,

(i) Whenever P P,. P' then, for some Q', Q 4, Q' and P' =f Q'.

(ii) Whenever Q -g Q' then, for some P', P =4 P' and P' =€ Q'.

Proposition 5.7 r-free equivalence is an equivalence relation.

Proposition 5.8 r-free equivalence is not a congruence relation for sequential ACSR.

58

The way in which the preemption relation is defined for comparisons between r events

and time consuming actions greatly simplifies the task of recasting r-free equivalence as a
congruence (as compared to the work required above to form an unprioritized congruence
from unprioritized equivalence). Just as in CCS, initial r steps must be preserved if nonde-

terministic choice is to preserve r-free congruence. But unlike unprioritized equivalence, the
possibility that application of the ACSR close operator may introduce preemptions where
none existed before is immaterial, since any nondeterministic choices that exist between

time consuming action steps in r-free equivalent processes must match exactly, so introduc-
tion of new preemptions through the close operator will effect all r-free equivalent processes

identically.

Definition 5.11 (r-Free Congruence: ;,f) P ;,, Q iff, for all a E A,

(i Whenever P -- , P' then, for some Q', Q --+ Q' and P' =. Q'.

(ii) Whenever Q Q, Q' then, for some P', P ---•,r P' and P' =f Q'.

Proposition 5.9 r-free congruence is a congruence relation.

Time-Triggered Congruence. In [20] real-time systems are subdivided into time-triggered
and event-triggered models, based on the way in which a system responds to its inputs.
Briefly, time-triggered systems are polling systems, in which inputs are accumulated be-
tween polling intervals and acted upon as a group at the end of the polling interval without
regard to the exact ordering of received events. In contrast, event-triggered systems are
event driven, responding immediately upon receiving an input. Event-triggered systems can
receive and respond to a potentially infinite stream of inputs between cycles of the system

clock.
Although ACSR's underlying model is event-triggered, it is still possible to use ACSR to

represent time-triggered systems. To do so, the author of a specification need only restrict
their processes so that received events are not acted upon until a unit of time has elapsed,

and the order in which events are received does not change the result computed. The result
of this restriction is that the order of event occurrences between any given pair of time
consuming actions becomes immaterial, since the events that happen between time intervals
are predetermined by the end of the preceding time consuming action. For example. consider
the following processes for handling out-of-paper alarms from a printer process:

PrintMonitor = recX.((PaperJam, 1).0 : (SignalOperator, 1).(WriteLog, 1).X +

59

6O:X
S~)

PrintMonitor' = recX.((PaperJam, 1). : (WriteLog, 1).(SignalOperator, 1).X +

)

No notion of equivalence that has been presented in the preceding sections could be used

to claim that these two processes are equivalent, yet from a time-triggered point of view they

must be, since the ordering of SignalOperator and WriteLog will not change the operation

of any time-triggered agent PrintMonitor or PrintMonitor' could be composed with. Their

behaviors are equivalent, from a time-triggered point of view.

We begin the definition of time-triggered equivalence with two preliminary definitions
that will simplify the formal definitions.

Definition 5.12 If t = ((el,pA),(e 2,p2),. (e,,p,,)) E VE*, then when E +,.

E' we write E -.t+, E'. We shall also write E --.t,r to mean that E _4,, E' for some E'.

Definition 5.13 Given an event trace t E VE*, the set of unique label and priority pairs

(ei,pi) in t is denoted events(t).

The definition of time-triggered equivalence addresses three types of process behaviors.

For two processes to be equivalent, their initial untimed event sequences must match, any
event sequences between corresponding time consuming actions must match, and any se-

quences of untimed events that lead up to a deadlocked state (NIL) must match. (To
"match" two untimed event sequences means that they must be made up of the same set of

unique (label, priority) pairs, although order and duplication is not significant.) The defini-
tion of Action Equivalence addresses the second and third conditions, while the definition of

Time-Triggered Equivalence addresses initial sequences of untimed events, and deadlocked
traces with no time consuming actions, while relying on the definition of Action Equivalence

to address the remaining portions of traces.

Definition 5.14 (Action Equivalence: =ae) P =.. Q iff, for all A1, A2 E VDR and t E

(i) Whenever P -- t,--,,A P 42, then, for some Q' and t' E ADEe, Q ---,-A Q', events(t) =

events(t'), and P Qe;

60

(ii) Whenever Q A•4,.. Q' -.• then, for some PI and t' E DE-, P . P', events(t) =
events(te), and F =., q;

(iii) Whenever P A'Vt P' -/. then, for some Q' and t' E DE*, Q - Q' Q , and

events(t) = events(t').
(iv) Whenever Q A.J, Q' 9;, then, for some P' and t' E VE-, P ... ' p,4,' and

events(t) = events(e).

Proposition 5.10 Action equivalence is an equivalence relation.

Definition 5.15 (Time-Triggered Equivalence: =tt) P =-- Q iff, for all A E DR and

t E 'DE*,

(i) Whenever P -,,' P1 +,. then, for some Q' and t' E DE*, Q _. Q', events(t) =
events(t'), and P' =Q;

(ii) Whenever Q _4.+ Q_-, . then, for some P' and t' E DE*, P -A., P', events(t) =
events(e), and F' Q';

(iii) Whenever P -..+t P' 74,, then, for some Q' and t' E *DE*, Q 4. Q' 7.,, and events(t) =

events(e');

(iv) Whenever Q -+, Q' 74 , then, for some P' and t' E -D, P ,,,P P' 74., and events(t) =

events(tj.

Proposition 5.11 Time-triggered equivalence is an equivalence relation.

Proposition 5.12 Time-triggered equivalence is not a congruence relation.

Proof: Consider the following process specifications:

P = (e,1).(f, 1).NIL

Q = (f, 1).(e, 1).NIL

S = X + (e, 2).NIL

That P =-- Q follows from the definition, since they include sequences of untimed actions
that differ only in the order of events. But substitution of P into S (S{P/X}) results in a
preemption of the P sub-process by the (e, 2) event of S that will not occur in the purely
nondeterministic S{Q/X}. 0

61

The problems involved in creating a time-triggered congruence for full ACSR are more

severe than for any of the previous relations. The difficulty arises from the restriction opera-

tor, which can terminate a process at any specified event label. Since allowing permutations

of event labels is basic to time-triggered equivalence, and early termination of permutated

event sequences may not produce the same set of (label, priority) pairs, there is no meaning-

ful way to reformulate the definition so that restriction will preserve congruence. Instead,

we settle for congruence over sequential ACSR.

Definition 5.16 (Partial Time-Triggered Congruence: "t) P -tt Q iff, for all a E

(i) Whenever P ---+, P' then, for some Q', Q --4,, Q' and P' =- Q'.

(ii) Whenever Q --+,r Q' then, for some P', P ---• P' and P' =n Q'.

Proposition 5.13 Partial time-triggered congruence is an equivalence relation.

Proposition 5.14 Partial time-triggered congruence is a congruence relation over sequen-

tial A CSR.

In fact, something stronger could be proved, since restriction is the only operator that must

be eliminated from full ACSR to allow a congruence to be defined.

5.2.2 Trace Based Equivalences

Definition 5.17 (Traces) For an ACSR process P with action domain V a trace of P is

a sequence of zero or more actions (al, a 2,'.. , an) E V" such that P -- P1 - ""-

Fn. The set of all traces of P is denoted trr(P).

Definition 5.18 (Operators on Traces) For t = (a 1,a 2,- ,a,n) a trace of an ACSR

process, hd(t) = a1 (the head oft) and tl(t) = (Q2, a3,". , an) (the tail oft).

Definition 5.19 (Trace Equivalence: =T) P =T Q iff tr,(P) C tr1 (Q) and tr,(Q) C

tr,(P)

Proposition 5.15 Trace equivalence is an equivalence relation.

Proposition 5.16 Trace equivalence is a congruence relation for full ACSR.

62

Trace equivalence is defined in terms of trace inclusion, which is simply a subset relation

between trace sets. In the spirit of the LTS based equivalence relations presented in Section

5.2.1, there are other interesting equivalence relations between trace sets that can be defined

to yield new trace based notions of equivalence. The first such relation ignores priority levels

on actions and external events. It is analogous to unprioritized equivalence.

Definition 5.20 (Unprioritized Trace Inclusion: CVf) For ACSR processes P and Q,

tr.(P) 9f tr.(Q) iff for all (al,a 2,'" , an) E tr,,(P),3(,31, #2,'",n13) E tr.(Q) such that

for all i, i(a,) = 1(/8j) (for events) or p(ai) = p(fiG) (for actions).

Definition 5.21 (Unprioritized Trace Equivalence: =TV) P =TV Q ifftr,1 (P) C_€ tr,(Q)

and tr,1 (Q) 9V, tr,(P)

In a system with resources dedicated to each process, the specific resources used by a

process may be of little interest when comparing alternative implementations. The following

equivalence relation captures that notion by matching only synchronization actions and the

placement of timed steps, ignoring the resources consumed by timed steps.

Definition 5.22 (Resource Neutral Trace Inclusion: Cd) For ACSR processes P and

Q, tr.(P) 9j tr.(Q) iff for all (0 1 ,a 2 ,.. ,an) E tr,(P), 3(01, #2, ,,n) E tr,(Q) such that

for all i, l(a,) = l(/8i) (for events) or ai and ji are actions.

Definition 5.23 (Resource Neutral Trace Equivalence: =T#) P =TJ Q iff tr.(P) cj
tr,(Q) and tr.(Q) C9 tr,(P)

The following equivalence relation extends the notion of r-free equivalence to equivalence

based on traces.

"Definition 5.24 (r-Free Equivalence of Traces: =f) For traces s and t, s =V t iff

1. s=() and t =(or

2. hd(s) = hd(t) and ti(s) =, tl(t); or

S. hd(s) = r and ti(s) =€, t; or

4. hd(t) = r and s =- t1(t).

63

Definition 5.25 (r-Free Trace Inclusion: C_) For ACSR processes P and Q, tr,(P) ge

tr,.(Q) iff for all s E tr,(P), 3t E tr,(Q) such that s =f t.

Definition 5.26 (i-Free Trace Equivalence: =Tf) P =TY Q iff tr,(P) gy tr,,(Q) and
tr,(Q) 9_1 tr.r(P)

Although there are many other interesting relations that can be defined, we believe that

the above ones are most intuitive and thus probably practical.

5.3 Logic for Communicating Shared Resources

In this section, we describe briefly on LCSR, logic for communicating shared resources. LCSR

is a temporal logic which is dedicated to ACSR. LCSR is well suited for expressing properties

about temporal ordering of events. The temporal operators are useful for specifying ACSR

program behavior. A LCSR formula, containing temporal operators, is interpreted over a

structure of ACSR program. LCSR is event based and interval logic. Hence the semantics

is based on intervals on time in ACSR program.

The syntax of LCSR is following:

E :: I lleIRIe"IRkI',EIE, VE 2

F ::- true I-'--1 (E2)F I-i{E2 }F I-F IF1 V F2

1 stands for disjunction of all events and all actions. e is instantaneous events and R

is time consuming actions. Informally, -AI(E2)F means that for some computation path,

E1 will occur contiguously until, within time I, event E2 occurs at which point F is true.
.- 4t{E2 }F means that there is for all computation paths, E1 will occur contiguously until,

within time I, event E2 occurs at which point F is true. Those two operators can be

expressed in terms of TCTL [1]:

-ý41(e2)F 3eiUj(e 2 A F)
"-!41f e2)F Ve1Ujt(e 2 A F)

The followings are some interesting real-time properites and corresponding LCSR formu-

las.

64

e After the reaction process (denoted by the events "beg", "end") starts, it cannot be

interrupted (denoted by the events "intBeg". "intEnd") for more than 12 time units

unless the reaction process stops:

[beg] --- [intBeg]Io,I 2]{ end V intEnd}

"• Once a job starts execution (denoted by "beg"), it will run to completion (denoted by

"end") without missing deadlind (denoted by "out"):

[beg] =-f{end }

"* Any sampling operations (denoted by "s") and injection operations (denoted by "p")

in the gas container should be at least 7 time units apart from each other:

([s] -24[7,7{1}) A ([p] - [,7]{1})

"* If the right button has been clicked (denoted by V") for three times within 5 time

units, there will be a menu poped up (denoted by "m") within 5 time units from the

last click:

[bl[o. [b2] .(1 {m1 }

"* Any interval of a train passing the cross (denoted by "enter" and "exit") should be

contained strictly in an interval of the gate being fully down (denoted by "down" and

"up"), and securing at least t time units beyond each end:

[up] e5 efdown'

A [down] "1}
A [enter] -=f{exit}lt,,){up1 }

1. There is no train entering the crossing from the gate being up to being down;

2. There is no train entering the crossing t time units from the gate being down;

3. Once a train enters the crossing, the gate will not be up until after t time units

after it exits.

65

LCSR can naturally describe various desirable properties of a ACSR (i.e.. GCSR) speci-

fication. The reasons for this new logic is because we could not use RTL as our requirement

specification logic and other real-time (temporal) logics does not naturally describe prop-

erties of ACSR specifications. We believe that a LCSR formula can be efficiently model

checked for ACSR specifications.

66

6 Phase II Implementation Plan

One goal of Phase I is to evaluate existing graphical specification systems to check whether

they can be used in implementing the toolkit environment. In Section 2.2 and Section

2.3, Modechart was evaluated and compared with ACSR. It was shown that ACSR terms
can be translated into Modechart by extending the graphical specification language. Also,

GCSR, a graphical specification language for ACSR, was defined in Section 3. It follows

that MCTool, a graphical specification system based on Modechart, can be extended to be

a graphical front-end of the toolkit environment. On the other hand, analysis tools of the
toolkit environment can be implemented by reusing source code from VERSA, an ACSR-

based tool for the algebraic analysis of real-time systems [71.

The overall structure of the toolkit environment is discussed in Section 6.1. The im-

plementation plan of reusing and extending MCTool and VERSA are presented in Section

6.2.

6.1 The Overall Structure of the Toolkit Environment

A high level view of the toolkit environment is presented in Figure 24.
The environment has a main menu window which contains commands of opening a spec-

ification, creating a specification and terminating the environment. Once a user opens or
creates a specification, a menu window for the specification appears. The menu window

contains commands that apply to a specification as a whole. The commands include saving,

reverting to a saved specification, printing, closing and performing analysis. A user creates,
views and modifies a GCSR specification using a graphics editor. It has icons of nodes and

edges of a GCSR graph. A user creates a graphical object by clicking one of the icons. Then
he annotates the created object using a corresponding template for its attributes. Also, he

can manipulate graphical objects by copying, deleting, pasting, aligning, enlarging, shrink-
ing, etc. A GCSR specification of a large-scale system can be represented by a set of graphs

and their hierarchy. A user can view the specification by scrolling the windows and navigat-
ing the hierarchy of the graphs. The graphics editor provides a navigation map for traversing

the whole specification expressed in GCSR.

A GCSR specification can be converted automatically to an ACSR specification that can
also be automatically translated to the CSR state machine for analysis. Once a specification

has been converted to the CSR state machine, the analyst may execute the specification and

test it to determine its reasonableness. The analyst may then apply optional state mini-

6 67

CGCSR ASpplicaticonne

T Trans Usr [Mnp'Lutl

Repes nt ation

AgntEpFsigure 24: GCSRe TookicEnirnment

68l

mization algorithms to the specification. Though the effectiveness of state minimization will

vary, successful application of this process can significantly reduce the computing resources

required by later analysis phases.

Analysis of the CSR state machine will be carried out using four basic analysis tools.

The first analysis tool is a simulation tool that demonstrates operational behaviors of a

specification by executing the CSR state machine. The GCSR graphs of the specification

being simulated are used as a graphical user interface. The analyst uses the GCSR graphs as

input ports for entering simulation parameters. The results from the simulation are displayed

through the graphs.

The second analysis tool is a model checking tool that will allow the GCSR specification

to be tested against LCSR propositions. LCSR propositions can be formulated to assert the

truth or falsity of various properties of the system, and the model checking algorithms can

be used to verify whether the CSR state machine (and consequently the GCSR specification

modeled), satisfies the given property.

The third analysis tool is a state exploration tool that can be used to generate valid

traces of actions for the system being analyzed. For finite systems it will be possible to

examine all valid traces of the system in question. For both finite and infinite systems the

state exploration tool will allow interactive exploration of traces, the selective enumeration

of subtraces, generation of all traces of a given finite length, and generation of fixed length

traces on the basis of random -zlection, or statistical weights of alternatives.

The fourth analysis tool will test for equivalence between two or more alternative GCSR

specifications. The type of equivalence verified may be relatively crude, such as trace equiva-

lence, or it may be a more sophisticated equivalence, such as weak bisimulation as described

in Section 5.2. For models that incorporate probability weights to characterize nondetermin-

ism, the analyst can use probabilistic bisimulation.

6.2 Implementation

The toolkit environment will be implemented in C++ and Unix/X windows environment.

The source code of MCTool and VERSA can be reused during the implementation.

The graphical user interface of the toolkit environment can be implemented by reusing

the source code of MCTool: The main menu window can be constructed by reusing the main

window of MCTool. The Specification window of MCTool can be used for implementing the

specification menu window of the environment.

The graphics editor of the environment will be implemented by extending the Work

69

Wodck.ARM Missle System

[]Editý [C] Renamfe Window FIn zoom(oyj]

~ L] HARM Midssl System =.-urCPU

MTS PL oLP UT IMFSP

~~ 0 0000

O 30 8 20 a 25 a 15 8 8 8

MTs-.work PL-worl oLPYwbrk uTYwork IMFSP..Woek

{CPU,5) {CPU.4) (CPU,3 (CR1.2) (C J, 1)

ALM

SHOW IMSRa PL-~ROady OLP-1eid rReadyl MFSPýReady

SHOW
TEPATE

Figure 25: Work Window: the HARM missile example

70

window of MCTool. New icons for the NIL node. the Dot node, the Recursi-rn node. the
Reference node, the External Exit edge, and the Internal Exit edge should be added as
to the Work window as shown in Figure 25. The templates of the nodes and the edges

must be created so that a user can enter and update the values of the attributes of the
associated graphical objects. Figure 25 illustrates a sample Work window which contains
the HARM missile example in GCSR. The navigation map of the graphics editor will be
implemented by reusing the Locator window of MCTool. The Locator window displays the

entire specification. A Work window indicator of the Locator window denotes the portion
of a specification displayed in the Work window. The indicator is used in rapid navigation
around specification. The indicator can be dragged and resized.

The current version of VERSA has tools for algebraic rewriting, equivalence testing (for

strong and weak bisimulation) and interactive execution [7]. The algebraic rewriting tool and
equivalence testing tool can be reused for the toolkit environment. The interactive execution
tool can be extended to be the GCSR simulator of the environment. VERSA is now being

extended by augmenting tools of model checking and state exploration. Those tools can also

be reused for the toolkit environment.

71

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems. In

Proc. of IEEE Symposium on Logic in Computer Science, 1990.

[2] R. Alur and D. Dill. Automata for modeling real-time systems. In Proc. of 17th ICALP,

LNCS 443, pages 322-335. Springer Verlag, 1990.

[3] H. Attiya and N. Lynch. Time Bounds for Real-Time Process Control in the Presence of

Timing Uncerta.inty. In Proc. of IEEE Real-Time Systems Symposium, pages 268-284,

December 1989.

[4] C. Belzile, G. MacEwen, and G. Marquis. RNet: A Hard Real-Time Distributed Pro-

gramming System. IEEE Transaction on Computers, C-36(8):917-932, August 1987.

[5] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal Model Generation. In Proc.

of the second Workshop on Computer-Aided Verification, 1990.

[6] Patrice Br~mond-Grigoire. Aprocess Algebra of Communicating Shared Resources with

Dense Time and Priorities. PhD thesis, Department of Computer and Information

Science, The University of Pennsylvania, Philadelphia, PA 19104, 1994. Tech. Report

MS-CIS-94-24.

[7] Duncan Clarke, Insup Lee, and Hong liang Xie. VERSA: A Tool for the Specification

and Analysis of Resource-Bound Real-Time Systems. Technical Report MS-CIS-93-77,

Dept. of CIS, Univ. of Pennsylvania, Sept 1993.

[8] P.C. Clements, C.L. heitmeyer, B.G. Labaw, and A. T. Rose. Mt: A toolset for specify-

ing and analyzing real-time systems. In Proc. of IEEE Real- Time Systems Symposium.
pages 12-22, Raleigh-Durham, North Carolina, December 1-3 1993.

[9] M.K. Franklin and A. Gabrielian. A Transformational Method for Verifying Safety

Properties in Real-Time Systems. In Proc. of IEEE Real-Time Systems Symposium,

pages 112-123, December 1989.

[10] A. Gabrielian and M.K. Franklin. Multilevel Specification of Real-Time Systems.

Comm. of ACM, 35(5):51-60. 1991.

[11] R. Gerber and I. Lee. A Layered Approach to Automating the Verification of Real-Time

Systems. IEEE Trans. on Software Eng.. 18(9):768-784, 1992.

72

[12] T. Henzinger, Z. Manna, and A. Pnueli. Temporal Proof Methodologies for Real-Time

Systems. In Proc. of ACM Principles of Programming Languages, 1991.

[131 K. Hong and J. Leung. Preemptive Scheduling With Release Time and Deadlines. Real-

Time Systems: The Interanational Journal of Time Critical Computing Systems, 1(3),

December 1989.

[14] J. Hooman. Specification and Compositional Verification of Real-Time Systems. PhD

thesis, Eindhoven University of Technology, 1991.

[15] F. Jahanian, R.S. Lee, and A. Mok. Semantics of Modechart in Real Tin.m Logic. In

Proc. 21st Hawaii Int. Conf. nn System Sciences, Jan. 88.

[16] F. Jahanian and A.K. Mok. Safety analysis of timing properties in real-time systems.

IEEE Transactions on Software Engineering, SE-12(9):890--904, September 1986.

[17] P. C. Kanellakis and S. A. Smolka. CCS Expressions, Finite State Processes, and Three

Problems of Equivalence. Information an& Computation, 86:43-68, 1990.

[18] Inhye Kang and Insup Lee. State Minimization for Concurrent System Analysis Based

on State Space Exploration. to appear in Proc. of COMPASS, June 1994.

(19] M.F. Kleyn and J.C. Browne. A high level language for specifying graph based languages

and their programming environments. In 15th International Conference on Software

Engineering, I.E.E.E. Proc., pages 16-21, Baltimore, Maryland, May 1993.

[20] H. Kopetz and K. Kim. Temporal uncertainties in interactions among real-time objects.

In Proc. 9th Symposioum on Reliable Distributed Systems, pages 165-174, October 1990.

[21] R. Koymans. Specifying real-time properties with metric temporal logic. Real- Time

Systems, 2(4):255-299, 1990.

[22] B. Krimer. Luqi, and V. Berzins. Compositional Semantics of a Real-Time Prototyping

Language. IEEE Trans. on Software Eng., 19(5):453-477, May 1993.

[231 1. Lee, P. Brimond-Grdgoire, and ber. A Process Algebraic Approach to the

Specification and Analysis of Resour, . ound Real-Time Systems. Proceedings of the

IEEE, pages 158-171. Jan 1994.

73

[241 1. Lee and V. Gehiot. Language Constructs for Distributed Real-Time Programming.

In Proc. IEEE Real- Time Systems Symposium, 1985.

[251 C.L. Liu and J.W. Layland. Scheduling algorithms for multi-programming in a hard-

real-time environment. Journal of the ACM, pages 46 - 61, January 1973.

(261 N. Lynch and H. Attiya. Using Mappings to Prove Timing Properties. Technical

Report MIT/LCS/TM-412b, Laboratory for Computer Science, Massachusetts Institute

of Technology, 1988.

[27] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. Technical

Report MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute

of Technology, 1988.

[28] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1992.

[29] M. Merritt, F. Modungo, and M. Tuttle. Time-Constrained Automata. In CONCUR

'91, August 1991.

[30] B. Meyer. Introduction to the Theory of Programming Languages. Prentice Hall, 1990.

[31] R. Milner. o,,, -unication and Concurrency. Prentice-Hall, 1989.

[321 J.S. Ostroff and W.M. Wonham. Modelling, Specifying and Verifying Real-time Em-

bedded Computer Systems. In Proc. of IEEE Real-Time Systems Symposium, pages

124-132, December 1987.

[331 R. Paige and R.E. Tarjan. Three Partition Refinement Algorithms. SIAM J. Comput.,
L6(6), December 1987.

[341 D. Peng and K.G. Shin. Modeling of Concurrent Task Execution in a Distributed System
for Real-time Control. IEEE Transactions on Computers, pages 500-516, April 1987.

[351 J.L Redondo. Schedulability Analyzer Tool. Technical Report UILU-ENG-93-1706,

University of Illinois at Urbana-Champaign, Feb 1993.

[36] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Processes.

In Proc. of Int. Conf. on Automata, Languages and Programming. LNCS 226, Springer

Verlag, 1986.

74

[37] F.B. Schneider. B. Bloom, and K. Marzullo. Putting Time into Proof Outlines. Technical

Report TR-93-1333, Cornell University, March 1993.

(38] L. Sha, R. Rajkumar. J. Lehoczky, and K. Ramamritham. Mode change Protocols

for Priority Driven Preemptive Scheduling. Real-Time Systems: The Interanational

Journal of Time Critical Computing Systems, 1(3), December 1989.

(39] A.C. Shaw. Reasoning About Time in Higher-Level Language Software. IEEE Trans-

actions on Software Engineering, 15(7):875-889, 1989.

[401 J.A. Stankovic, K. Ramarnritham, and S. Cheng. Evaluation of a Flexible Task Schedul-

ing Algorithm for Distributed Hard Real-Time Systems. IEEE Transactions on Com-

puters, pages 1130-1143. December 1985.

(41] A. D. Stoyenko. A Schedulability Analyzer for Real-Time Euclid. In Proc. of IEEE

Real-Time Systems Symposium, pages 218-227, December 1987.

[42] H. Tokuda and M. Kotera. A Real-Time Tool Set for the ARTS Kernel. In Proc. of

IEEE Real- Time Systems Symposium, pages 289-298, December 1988.

[43] W. Zhao, K. Ramamritharn, and J. Stankovic. Preemptive Scheduling under Time and

Resource Constraints. IEEE Transactions on Computers, pages 949-960, August 1987.

75

